Author
Listed:
- Seba AlAreeqi
(Khalifa University of Science and Technology
Johns Hopkins University)
- Connor Ganley
(Johns Hopkins University)
- Daniel Bahamon
(Khalifa University of Science and Technology)
- Kyriaki Polychronopoulou
(Center for Catalysis and Separations (CeCaS) and Department of Mechanical and Nuclear Engineering Khalifa University of Science and Technology)
- Paulette Clancy
(Johns Hopkins University)
- Lourdes F. Vega
(Khalifa University of Science and Technology)
Abstract
Designing highly active, cost-effective, stable, and coke-resistant catalysts is a hurdle in commercializing bio-oil steam reforming. Single-atom alloys (SAAs) are captivating atomic ensembles crosschecking affordability and activity, yet their stability is held questionable by trial-and-error synthesis practices. Herein, we employ descriptor-based density functional theory (DFT) calculations to elucidate the stability, activity, and regeneration of Ni-based SAA catalysts for acetic acid dehydrogenation. While 12 bimetallic candidates pass the cost/stability screening, they uncover varying dehydrogenation reactivity and selectivity, introduced by favoring different acetic acid adsorption modes on the SAA sites. We find that Pd-Ni catalyst provokes the utmost H2 activity, however, ab-initio molecular simulations at 873 K reveals the ability of Cu-Ni site to effectively desorb hydrogen compared to Pd-Ni and Ni, attributed to the narrowed surface charge depletion region. Notably, this Cu-Ni performance is coupled with enhancing C*-gasification and acetic acid dehydrogenation with respect to Ni. Building upon these findings, DFT-screening of trimetallic M1-M2-Ni co-dopants recognizes 6 novel modulated single-sites with high stability, balanced H*-adsorption, and anti-coking susceptibility. This work provides invaluable data to accelerate the discovery of affordable and efficient bimetallic and trimetallic SAA catalysts for bio-oil upgrading to green hydrogen.
Suggested Citation
Seba AlAreeqi & Connor Ganley & Daniel Bahamon & Kyriaki Polychronopoulou & Paulette Clancy & Lourdes F. Vega, 2025.
"Rational design of optimal bimetallic and trimetallic nickel-based single-atom alloys for bio-oil upgrading to hydrogen,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57949-6
DOI: 10.1038/s41467-025-57949-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57949-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.