IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57939-8.html
   My bibliography  Save this article

Hydrogen-bonded organic frameworks for photocatalytic synthesis of hydrogen peroxide

Author

Listed:
  • Ji-Hong Zhang

    (Tianjin University of Technology)

  • Zhao-Ming Ge

    (Tianjin University of Technology)

  • Juan Wang

    (Tianjin University of Technology)

  • Di-Chang Zhong

    (Tianjin University of Technology)

  • Tong-Bu Lu

    (Tianjin University of Technology)

Abstract

Photocatalysis provides a sustainable and environment-friendly strategy to produce H2O2, yet the catalytic efficiency of H2O2 overall photosynthesis (O2 + 2H2O → 2H2O2) needs to be further improved, especially in the absence of additional cocatalysts, photosensitizers and sacrificial agents. Here we find that hydrogen-bonded organic frameworks can serve as photocatalysts for H2O2 overall photosynthesis under the above-mentioned conditions. Specifically, we constructed a donor–acceptor hydrogen-bonded organic framework that exhibits a high photocatalytic activity for H2O2 overall photosynthesis, with a production rate of 681.2 μmol g-1 h-1. The control experiments and theoretical calculation revealed that the hydrogen-bonded organic frameworks with donor–acceptor structures can not only accelerate the charge separation and transfer but also optimize the reaction pathways, which significantly boosts the photocatalytic efficiency in H2O2 overall photosynthesis. This work provides insights into the design and development of efficient photocatalysts for overall H2O2 photosynthesis.

Suggested Citation

  • Ji-Hong Zhang & Zhao-Ming Ge & Juan Wang & Di-Chang Zhong & Tong-Bu Lu, 2025. "Hydrogen-bonded organic frameworks for photocatalytic synthesis of hydrogen peroxide," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57939-8
    DOI: 10.1038/s41467-025-57939-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57939-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57939-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57939-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.