Author
Listed:
- Yuxuan Zhang
(University of Toronto)
- Juan Carrasquilla
(ETH Zürich)
- Yong Baek Kim
(University of Toronto)
Abstract
Quantum computers have long been anticipated to excel in simulating quantum many-body physics. In this work, we demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems. Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection, a major challenge in simulating non-Hermitian dynamics via standard Trotterization. On the Quantinuum H1 trapped-ion processor, we experimentally observed a supersonic mode on an n = 18 fermionic chain after a non-Hermitian, nearest-neighbor interacting quench, which would otherwise be forbidden in a Hermitian system. Additionally, we investigate sequential quantum circuits generated by tensor networks for ground-state preparation using a variance minimization scheme, accurately capturing correlation functions and energies across an exceptional point on a dissipative spin chain up to length n = 20 using only 3 qubits. On the other hand, we provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $$\Theta (\log (n))$$ Θ ( log ( n ) ) time from certain initial states is exponentially hard on a quantum computer. Our work raises many intriguing questions about the intrinsic properties of non-Hermitian systems that permit efficient quantum simulation.
Suggested Citation
Yuxuan Zhang & Juan Carrasquilla & Yong Baek Kim, 2025.
"Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57930-3
DOI: 10.1038/s41467-025-57930-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57930-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.