Author
Listed:
- Han Wei Tian
(Southeast University
Southeast University)
- Ya Lun Sun
(Southeast University
Southeast University)
- Xin Ge Zhang
(Southeast University
Southeast University)
- Xin Li
(Southeast University
Southeast University)
- Qian Zhu
(Southeast University
Southeast University)
- Chao Song
(Southeast University
Southeast University)
- Cheng-Wei Qiu
(National University of Singapore)
- Tie Jun Cui
(Southeast University
Southeast University)
- Wei Xiang Jiang
(Southeast University
Southeast University
Purple Mountain Laboratories)
Abstract
Programmable metasurface holds big promise in wireless communications by virtue of its powerful capability in controlling electromagnetic waves. However, challenges exist for the programmable metasurface in achieving self-sufficient renewable energy supply and flexible and reliable multi-domain information transmissions. Here, we report a solar-powered light-modulated microwave programmable metasurface (SLMPM) by integrating a photovoltaic module to acquire information from modulated light and energy from sunlight simultaneously. Such an SLMPM enables direct, real-time, and reliable information transmissions from light to microwave domains under direct sunlight exposure, with the flexibility to implement various modulation schemes. Its low power consumption and on-board energy harvesting capability allows for 24 hours of light-to-microwave information transmission with 8 hours of sole sunlight energy input. A hybrid wireless communication system for real-time image transmission is demonstrated to show the outstanding features of SLMPM. We believe that SLMPM can contribute to the sustainable advancement of future wireless communications, rendering them more cost-effective, energy-efficient, environment-friendly, and ubiquitous.
Suggested Citation
Han Wei Tian & Ya Lun Sun & Xin Ge Zhang & Xin Li & Qian Zhu & Chao Song & Cheng-Wei Qiu & Tie Jun Cui & Wei Xiang Jiang, 2025.
"Solar-powered light-modulated microwave programmable metasurface for sustainable wireless communications,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57923-2
DOI: 10.1038/s41467-025-57923-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57923-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.