Author
Listed:
- Yingchao Dong
(The Chinese University of Hong Kong)
- Camille Violet
(Yale University)
- Chunyi Sun
(Jinan University)
- Xianhui Li
(Guangdong University of Technology)
- Yuxuan Sun
(The Chinese University of Hong Kong)
- Qingbin Zheng
(The Chinese University of Hong Kong)
- Chuyang Tang
(The University of Hong Kong)
- Menachem Elimelech
(Rice University
Rice University)
Abstract
The desalination performance of conventional distillation membranes is limited by insufficient stability and energy efficiency, impeding their application in sustainable water production. Herein, we report a ceramic-carbon Janus membrane with solar-thermal functionality for enhanced desalination performance, energy efficiency, and stability for hypersaline water treatment. The feed and permeate sides of this Janus membrane are designed with different properties such as wettability, conductivity, and solar-thermal conversion to enhance performance. We demonstrate that this membrane exhibits higher solar-thermal efficiency (66.8–68.8%) and water flux (3.3–5.1 L m–2 h–1) than most existing polymeric solar-thermal distillation membranes. Simulation results ascribe enhanced performance to an increased membrane surface temperature, which mitigates temperature polarization and attenuation, thus enhancing the desalination driving force. The nano-carbon membrane surface accelerates water evaporation by inducing a transition from free water to intermediate water with decreased hydrogen bonding and a lower evaporation energy barrier. Water vapor molecules transport through the membrane pores by a combined mechanism of Knudsen diffusion and viscous flow. Even for seawater and hypersaline water, the membrane exhibits stable water flux and salt rejection due to its scaling-resistant surface and stable interfacial temperature. This work provides a strategy for rationally designing next-generation Janus membranes for sustainable water purification.
Suggested Citation
Yingchao Dong & Camille Violet & Chunyi Sun & Xianhui Li & Yuxuan Sun & Qingbin Zheng & Chuyang Tang & Menachem Elimelech, 2025.
"Ceramic-carbon Janus membrane for robust solar-thermal desalination,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57888-2
DOI: 10.1038/s41467-025-57888-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57888-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.