Author
Listed:
- Naohiko Okabe
(UCLA)
- Xiaofei Wei
(UCLA)
- Farah Abumeri
(UCLA)
- Jonathan Batac
(UCLA)
- Mary Hovanesyan
(UCLA)
- Weiye Dai
(UCLA)
- Srbui Azarapetian
(UCLA)
- Jesus Campagna
(UCLA)
- Nadia Pilati
(Istituto di Ricerca Pediatrica Citta’ della Speranza)
- Agostino Marasco
(Istituto di Ricerca Pediatrica Citta’ della Speranza)
- Giuseppe Alvaro
(Istituto di Ricerca Pediatrica Citta’ della Speranza)
- Martin J. Gunthorpe
(Stevenage Bioscience Catalyst)
- John Varghese
(UCLA)
- Steven C. Cramer
(California Rehabilitation Institute)
- Istvan Mody
(UCLA
UCLA)
- S. Thomas Carmichael
(UCLA)
Abstract
Motor disability is a critical impairment in stroke patients. Rehabilitation has a limited effect on recovery; but there is no medical therapy for post-stroke recovery. The biological mechanisms of rehabilitation in the brain remain unknown. Here, using a photothrombotic stroke model in male mice, we demonstrate that rehabilitation after stroke selectively enhances synapse formation in presynaptic parvalbumin interneurons and postsynaptic neurons in the rostral forelimb motor area with axonal projections to the caudal forelimb motor area where stroke was induced (stroke-projecting neuron). Rehabilitation improves motor performance and neuronal functional connectivity, while inhibition of stroke-projecting neurons diminishes motor recovery. Stroke-projecting neurons show decreased dendritic spine density, reduced external synaptic inputs, and a lower proportion of parvalbumin synapse in the total GABAergic input. Parvalbumin interneurons regulate neuronal functional connectivity, and their activation during training is necessary for recovery. Furthermore, gamma oscillation, a parvalbumin-regulated rhythm, is increased with rehabilitation-induced recovery in animals after stroke and stroke patients. Pharmacological enhancement of parvalbumin interneuron function improves motor recovery after stroke, reproducing rehabilitation recovery. These findings identify brain circuits that mediate rehabilitation-recovery and the possibility for rational selection of pharmacological agents to deliver the first molecular-rehabilitation therapeutic.
Suggested Citation
Naohiko Okabe & Xiaofei Wei & Farah Abumeri & Jonathan Batac & Mary Hovanesyan & Weiye Dai & Srbui Azarapetian & Jesus Campagna & Nadia Pilati & Agostino Marasco & Giuseppe Alvaro & Martin J. Gunthorp, 2025.
"Parvalbumin interneurons regulate rehabilitation-induced functional recovery after stroke and identify a rehabilitation drug,"
Nature Communications, Nature, vol. 16(1), pages 1-25, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57860-0
DOI: 10.1038/s41467-025-57860-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57860-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.