Author
Listed:
- Zhaoyu Jia
(Shandong University)
- Bo Li
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati)
- Mitsunori Matsuo
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati
University of Tokyo)
- Amanda Dewar
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati)
- Anxhela Mustafaraj
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati)
- Sudhansu K. Dey
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati)
- Jia Yuan
(Shandong University)
- Xiaofei Sun
(Cincinnati Children’s Hospital Medical Center
University of Cincinnati)
Abstract
Uterine receptivity is essential for successful implantation. In mice, uterine receptivity begins with the secretion of LIF from uterine glands stimulated by estrogen on the morning of day 4 pregnancy. We hypothesize that gland readiness for estrogen stimulation is indispensable for uterine receptivity. The current study reveals that uterine glands undergo a differentiation process with expanded branching during the preimplantation period. The single-cell RNA profiling of glandular cells identifies that LIF is expressed exclusively in a Prss29+ subgroup of glandular cells on day 4 of pregnancy. Interestingly, Foxa2-deficient glands lacking LIF production fail to develop branches and the functional Prss29+ subgroup. This Prss29+ subgroup develops prior to estrogen secretion. Collectively, our findings show that uterine glands undergo a FOXA2-dependent maturation process to acquire the competence, named “transitional phase”, for entering the receptive phase. The “transitional phase”, predicting uterine receptivity one day before implantation, is a landmark concept in uterine receptivity.
Suggested Citation
Zhaoyu Jia & Bo Li & Mitsunori Matsuo & Amanda Dewar & Anxhela Mustafaraj & Sudhansu K. Dey & Jia Yuan & Xiaofei Sun, 2025.
"Foxa2-dependent uterine glandular cell differentiation is essential for successful implantation,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57848-w
DOI: 10.1038/s41467-025-57848-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57848-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.