Author
Listed:
- Sarah L. Chellappa
(Brigham and Women’s Hospital
Harvard Medical School
University of Southampton)
- Lei Gao
(Harvard Medical School
Harvard Medical School
Brigham and Women’s Hospital)
- Jingyi Qian
(Brigham and Women’s Hospital
Harvard Medical School)
- Nina Vujovic
(Brigham and Women’s Hospital
Harvard Medical School)
- Peng Li
(Harvard Medical School
Harvard Medical School
Brigham and Women’s Hospital
Broad Institute of Massachusetts Institute of Technology and Harvard University)
- Kun Hu
(Harvard Medical School
Harvard Medical School
Brigham and Women’s Hospital
Broad Institute of Massachusetts Institute of Technology and Harvard University)
- Frank A.J.L. Scheer
(Brigham and Women’s Hospital
Harvard Medical School
Broad Institute of Massachusetts Institute of Technology and Harvard University)
Abstract
Effective countermeasures against the adverse cardiovascular effects of circadian misalignment, such as effects experienced due to night work or jet lag, remain to be established in humans. Here, we aim to test whether eating only during daytime can mitigate such adverse effects vs. eating during the night and day (typical for night shift workers) under simulated night work (secondary analysis of NCT02291952). This single-blind, parallel-arm trial randomized 20 healthy participants (non-shift workers) to simulated night work with meals consumed during night and day (Nighttime Meal Control Group) or only during daytime (Daytime Meal Intervention Group). The primary outcomes were pNN50 (percentage consecutive heartbeat intervals >50 ms), RMSSD (root mean square of successive heartbeat differences), and LF/HF (low/high cardiac frequency). The secondary outcome was blood concentrations of prothrombotic factor plasminogen activator inhibitor-1 (PAI-1). These measures were assessed under Constant Routine conditions, before (baseline) and after (postmisalignment) simulated night work. The meal timing intervention significantly modified the impact of simulated night work on cardiac vagal modulation and PAI-1 (pFDR = 0.001). In the Control Group, the postmisalignment Constant Routine showed a decrease in pNN50 by 25.7% (pFDR = 0.008) and RMMSD by 14.3% (pFDR = 0.02), and an increase in LF/HF by 5.5% (pFDR = 0.04) and PAI-1 by 23.9% (pFDR = 0.04), vs. the baseline Constant Routine. In the Intervention Group, there were no significant changes in these outcomes. For exploratory outcomes, the intervention significantly modified the impact of simulated night work on blood pressure (P
Suggested Citation
Sarah L. Chellappa & Lei Gao & Jingyi Qian & Nina Vujovic & Peng Li & Kun Hu & Frank A.J.L. Scheer, 2025.
"Daytime eating during simulated night work mitigates changes in cardiovascular risk factors: secondary analyses of a randomized controlled trial,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57846-y
DOI: 10.1038/s41467-025-57846-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57846-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.