Author
Listed:
- Qianlu Sun
(Nanjing University)
- Jiamin Lin
(Nanjing University)
- Pedro Ludwig Hernandez-Martine
(Nanyang Technological University)
- Taotao Li
(Nanjing University)
- Yantong Li
(South China University of Technology)
- Li Li
(Nanjing University)
- Changjin Wan
(Nanjing University)
- Nannan Mao
(Nanjing University)
- Huakang Yu
(South China University of Technology)
- Peng Wang
(Nanjing University
University of Warwick
University of Warwick)
- Hilmi Volkan Demir
(Nanyang Technological University)
- Zehua Hu
(Nanjing University)
- Rui Su
(Nanyang Technological University
Nanyang Technological University)
- Weigao Xu
(Nanjing University)
Abstract
When disassembled into monolayers from their bulk crystals, two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit exotic optical properties dominated by strong excitonic effects. Reassembling 2D TMDC layers to build bulk excitonic crystals can significantly boost their optical performance and introduce emerging functionalities toward optoelectronic and valleytronic applications. However, maintaining or manipulating 2D excitonic properties in bulk structures or superlattices is challenging. Herein, we developed a method to precisely construct m∙2N-layer artificial excitonic crystals with only a number N of stacking operations (m denotes the layer number of the initial material unit), referred to as the “2^N method”. We successfully fabricated a millimeter-scale weakly coupled 16-layer MoS2 single crystal with zero interlayer twist angle, which retains monolayer-like exciton properties and exhibits remarkable enhancements up to 643% and 646% in their absorption and photoluminescence (PL) features, respectively. Moreover, we created a WSe2/(MoS2/WSe2)3/MoS2 superlattice starting from monolayer WSe2 and MoS2, which demonstrated an intensity increase of up to 400% in quadrupolar interlayer exciton (IX) emission as compared to dipolar IXs in its bilayer counterpart. Our work shows a promising approach for the design and bottom-up fabrication of excitonic crystals, promoting the exploration of excitonic physics in complex van der Waals (vdW) structures and their applications in optoelectronic devices.
Suggested Citation
Qianlu Sun & Jiamin Lin & Pedro Ludwig Hernandez-Martine & Taotao Li & Yantong Li & Li Li & Changjin Wan & Nannan Mao & Huakang Yu & Peng Wang & Hilmi Volkan Demir & Zehua Hu & Rui Su & Weigao Xu, 2025.
"Designable excitonic effects in van der Waals artificial crystals with exponentially growing thickness,"
Nature Communications, Nature, vol. 16(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57759-w
DOI: 10.1038/s41467-025-57759-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57759-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.