IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57723-8.html
   My bibliography  Save this article

Controlled chain-growth polymerization via propargyl/allenyl palladium intermediates

Author

Listed:
  • Zheng-Lin Wang

    (Peking University)

  • Rong Zhu

    (Peking University)

Abstract

In contrast to allyl palladium complexes, propargylic/allenylic palladium species display complex reactivities that limit their implementation in polymer chemistry, especially for chain-growth polymerizations. Here we report an example of controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Vinylidenecyclopropane 1,1-dicarboxylate (VDCP), a unique allenylic electrophile, selectively reacts via the σ-allenyl palladium complex rather than the more common π-propargyl pathway, thereby unlocking a chain-growth process. Based on this concept, precise synthesis of alkyne-backbone polymers is realized, featuring fast rate, high molecular weight, narrow dispersity, high chemoselectivity, and excellent end-group fidelity. We demonstrate preparation of unsaturated macromolecules with advanced sequences and architectures using this method, including block, gradient, and graft copolymers.

Suggested Citation

  • Zheng-Lin Wang & Rong Zhu, 2025. "Controlled chain-growth polymerization via propargyl/allenyl palladium intermediates," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57723-8
    DOI: 10.1038/s41467-025-57723-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57723-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57723-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57723-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.