Author
Listed:
- Zechuan Dai
(University of Science and Technology of China)
- Yanxu Chen
(University of Science and Technology of China)
- Huaikun Zhang
(University of Science and Technology of China)
- Mingyu Cheng
(University of Science and Technology of China)
- Bocheng Zhang
(University of Science and Technology of China)
- Pingyi Feng
(University of Science and Technology of China)
- Yafei Feng
(University of Science and Technology of China)
- Genqiang Zhang
(University of Science and Technology of China)
Abstract
Electrochemical urea synthesis has recently emerged as a fascinating energy-efficient alternative route, while it remains challenging to achieve simultaneously high production rate and Faradaic efficiency. Herein, we realize an energy-favorable electrochemical C-N coupling path through CO2 and NO3− co-reduction at the heterointerfaces of Cu/Cu2O microparticles, generated by in-situ electrochemical engineering on bulk Cu2O. We achieve urea production rate of 632.1 μg h−1mgcat.−1 with a corresponding Faradaic efficiency of 42.3% at −0.3 V (versus RHE) under ambient conditions. Operando synchrotron radiation-Fourier transform infrared spectroscopy, along with theoretical calculations, reveals the coupling of intermediates NOH* and CO* at the heterointerfaces, benefiting from the modified electronic structure. This work provides a practical route for catalyst design and insights into urea electrosynthesis systems.
Suggested Citation
Zechuan Dai & Yanxu Chen & Huaikun Zhang & Mingyu Cheng & Bocheng Zhang & Pingyi Feng & Yafei Feng & Genqiang Zhang, 2025.
"Surface engineering on bulk Cu2O for efficient electrosynthesis of urea,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57708-7
DOI: 10.1038/s41467-025-57708-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57708-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.