IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57705-w.html
   My bibliography  Save this article

Photo-induced ring-maintaining hydrosilylation of unactivated alkenes with hydrosilacyclobutanes

Author

Listed:
  • Shaowei Chen

    (Wuhan University)

  • Meiyun Gao

    (Wuhan University)

  • Xiaoqian He

    (Wuhan University)

  • Xiao Shen

    (Wuhan University)

Abstract

Increasing attention has been paid to silacyclobutanes because of their wide application in ring opening and ring extension reactions. However, the synthesis of functionalized silacyclobutanes remains an unmet challenge because of the limited functional group tolerance of the reactions with organometallic reagents and chlorosilacyclobutanes. Herein, we report a conceptually different solution to this end through a visible-light-induced metal-free hydrosilylation of unactivated alkenes with hydrosilacyclobutanes. A wide range of unactivated alkenes with diverse functional groups including the base-sensitive acid, alcohol and ketones participated in this reaction smoothly. In particular, the first hydrosilylation reaction of alkenes with dihydrosilacyclobutane provides a facile access to various functionalized alkyl monohydrosilacyclobutanes. Unsymmetrical dialkyl silacyclobutanes have also been synthesized through consecutive hydrosilylation with dihydrosilacyclobutane in one pot. The mechanism study reveals that the Lewis basic solvent could promote the generation of strained silyl radicals by direct light irradiation without a redox-active photocatalyst and the thiol catalyst plays an important role in accelerating the reaction.

Suggested Citation

  • Shaowei Chen & Meiyun Gao & Xiaoqian He & Xiao Shen, 2025. "Photo-induced ring-maintaining hydrosilylation of unactivated alkenes with hydrosilacyclobutanes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57705-w
    DOI: 10.1038/s41467-025-57705-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57705-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57705-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57705-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.