Author
Listed:
- Xiaofei Jiao
(Zhejiang University School of Medicine
Zhejiang University School of Medicine)
- Zhongyang Liang
(Zhejiang University School of Medicine
Zhejiang University School of Medicine)
- Jiwei Li
(Zhejiang University School of Medicine
Zhejiang University School of Medicine)
- Long Bai
(Zhejiang University School of Medicine
Zhejiang University School of Medicine)
- Jun Xu
(Zhejiang University School of Medicine
Zhejiang University School of Medicine
Zhejiang University)
- Yidan Liu
(Zhejiang University School of Medicine
Zhejiang University School of Medicine)
- Lin-Yu Lu
(Zhejiang University School of Medicine
Zhejiang University School of Medicine
Zhejiang University)
Abstract
Chromosome synapsis is an evolutionarily conserved process essential for meiotic recombination. HORMAD1 and HORMAD2, which monitor chromosome asynapsis by localizing to unsynapsed chromosome axes, are removed from synapsed chromosome axes by TRIP13, though the biological significance of this process remains unclear. We show that when HORMAD1 and HORMAD2 are retained on synapsed chromosome axes, they recruit BRCA1, activate chromosome asynapsis checkpoint, and trigger oocyte elimination. Unexpectedly, N-terminal tagging retains HORMAD1 and HORMAD2 on synapsed chromosome axes without triggering oocyte elimination due to defective BRCA1 recruitment. Mechanistically, HORMAD1 co-immunoprecipitates with BRCA1 readily, not through the canonical closure motif-binding mode but via an interface on its HORMA domain near the N-terminus. HORMAD2 co-immunoprecipitates with BRCA1 weakly but also regulates its recruitment. Collectively, the TRIP13-dependent removal of HORMAD1 and HORMAD2 from synapsed chromosome axes is essential for female fertility, preventing aberrant chromosome asynapsis checkpoint activation and unintended oocyte elimination.
Suggested Citation
Xiaofei Jiao & Zhongyang Liang & Jiwei Li & Long Bai & Jun Xu & Yidan Liu & Lin-Yu Lu, 2025.
"Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57702-z
DOI: 10.1038/s41467-025-57702-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57702-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.