Author
Listed:
- Rongchen Shen
(South China Agricultural University
South China Agricultural University
Shaoguan University)
- Can Huang
(South China Agricultural University
South China Agricultural University)
- Lei Hao
(South China Agricultural University
South China Agricultural University)
- Guijie Liang
(Hubei University of Arts and Science)
- Peng Zhang
(Zhengzhou University)
- Qiang Yue
(Shaoguan University)
- Xin Li
(South China Agricultural University
South China Agricultural University
Zhengzhou University)
Abstract
Ground-state charge transfer plays a vital role in improving the photocatalytic performance of D-A type covalent organic frameworks. However, limited studies have explored the modulation of photocatalytic performance in COFs-based photocatalysts through ground-state charge transfer. Here we show the formation of extremely intense ground-state charge transfer via a unique covalent bonding approach. We transform three-dimensional stacked COF-based S-scheme heterojunctions (FOOCOF-PDIU) into co-planar single-molecule junctions (FOOCOF-PDI). This co-planar single-molecule junction structure exhibits strong ground-state charge transfer compared to the traditional randomly stacked heterojunctions and individual COFs. Ground-state charge transfer induces charge redistribution and dipole moment formation, which enhances the built-in electric field intensity in single-molecule junctions. This enhanced built-in electric field promotes exciton dissociation and charge separation, resulting in improved photocatalytic efficiency. Therefore, a stable molecule-decorated COF with broad light absorption has been successfully obtained, whose hydrogen evolution rate can reach 265 mmol g−1 h−1. This work opens an avenue for exploiting photocatalytic mechanisms in COFs based on ground-state charge transfer effects.
Suggested Citation
Rongchen Shen & Can Huang & Lei Hao & Guijie Liang & Peng Zhang & Qiang Yue & Xin Li, 2025.
"Ground-state charge transfer in single-molecule junctions covalent organic frameworks for boosting photocatalytic hydrogen evolution,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57662-4
DOI: 10.1038/s41467-025-57662-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57662-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.