Author
Listed:
- Chaoxian Chen
(Peking University)
- Yufan Ji
(Peking University)
- Haomin Li
(Peking University)
- Tianfu Song
(Peking University)
- Haifeng Yu
(Peking University)
Abstract
Human substance needsśś have been enriched by the development of smart-responsive materials possessing unique responsiveness and mechanical variability. However, acquiring these features in photoresponsive energy-driven elastomers is challengeable but highly desirable. Here, we report fabrication of physically-crosslinked elastomers based on an aliphatic polycarbonate terminated with one azobenzene derivative as the end group. Upon irradiation of UV light, the aliphatic polycarbonate shows unusual mechanical transformation from trans-azobenzene-rich elasticity to cis-azobenzene-rich plasticity, which is contrary to the photo-triggered mechanics of other azopolymers. This indicates that stronger interaction may be established between the terminated cis-azobenzenes and the benzene rings in the side chain of polymer, leading to a higher crosslinking density appeared in the cis-azobenzene-rich sample. This azobenzene-terminated polymer is an energy-driven elastomer, which has photo-switchable supramolecular interactions, showing photo-tunable mechanical properties (the half-life period of the cis-azobenzene is 16.9 h). More interestingly, the photoinduced mechanical change occurs at room temperature, enabling the aliphatic polycarbonate to behave as non-thermally switchable ultra-strong adhesive for different substrates, which is specifically suitable for smart dressings to promote wound healing. This switchable mechanical feature of elastomers may be a reference for smart elastomers towards advanced applications.
Suggested Citation
Chaoxian Chen & Yufan Ji & Haomin Li & Tianfu Song & Haifeng Yu, 2025.
"Unusual photo-tunable mechanical transformation of azobenzene terminated aliphatic polycarbonate,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57608-w
DOI: 10.1038/s41467-025-57608-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57608-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.