IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57552-9.html
   My bibliography  Save this article

Graph-structured populations elucidate the role of deleterious mutations in long-term evolution

Author

Listed:
  • Nikhil Sharma

    (Max Planck Institute for Evolutionary Biology)

  • Suman G. Das

    (Universität Bern
    Swiss Institute of Bioinformatics)

  • Joachim Krug

    (Max Planck Institute for Evolutionary Biology
    University of Cologne)

  • Arne Traulsen

    (Max Planck Institute for Evolutionary Biology)

Abstract

Birth-death models are used to understand the interplay of genetic drift and natural selection. While well-mixed populations remain unaffected by the order of birth and death and where selection acts, evolutionary outcomes in spatially structured populations are affected by these choices. We show that the choice of individual moving to vacant sites—parent or offspring—controls the initial mutant placement on a graph and hence alters its fixation probability. Moving parent individuals introduces, to our knowledge, previously unexplored update rules and fixation categories for heterogeneous graphs. We identify a class of graphs, amplifiers of fixation, where fixation probability is larger than in well-mixed populations, regardless of the mutant fitness. Under death-Birth parent moving, the star graph is an amplifier of fixation, with a non-zero fixation probability for deleterious mutants, in contrast to very large well-mixed populations. Most Erdős-Rényi graphs of size 8 are amplifiers of fixation under death-Birth parent moving, but suppressors of fixation under Birth-death offspring moving. Surprisingly, amplifiers of fixation attain lower fitness in long-term evolution, despite favouring beneficial mutants, while suppressors of fixation attain higher fitness. These counterintuitive findings are explained by the fate of deleterious mutations and highlight the crucial role of deleterious mutants for adaptive evolution.

Suggested Citation

  • Nikhil Sharma & Suman G. Das & Joachim Krug & Arne Traulsen, 2025. "Graph-structured populations elucidate the role of deleterious mutations in long-term evolution," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57552-9
    DOI: 10.1038/s41467-025-57552-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57552-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57552-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57552-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.