Author
Listed:
- C. S. Hassler
(University of Geneva
Ecole Polytechnique Fédérale de Lausanne
University of Lausanne)
- R. Simó
(ICM-CSIC)
- S. E. Fawcett
(University of Cape Town
University of Cape Town)
- M. J. Ellwood
(Australian National University
Australian National University)
- S. L. Jaccard
(University of Lausanne)
Abstract
Iron, which is an essential element for marine photosynthesis, is sparingly soluble in seawater. In consequence, iron bioavailability controls primary productivity in up to 40% of the world’s ocean, including most of the Southern Ocean. Organic ligands are critical to maintaining iron in solution, but their nature is largely unknown. Here, we use a comprehensive dataset of electroactive humics and iron-binding ligands in contrasting regions across the Southern Ocean to show that humic substances are an important part of the iron binding ligand pool, as has been found elsewhere. However, we demonstrate that humics are mostly produced in situ and composed of exopolymeric substances from phytoplankton and bacteria, in contrast to other regions where terrestrially-derived humics are suggested to play a major role. While phytoplankton humics control the biogeochemistry, bioavailability and cycling of iron in surface waters, humics produced or reprocessed by bacteria affect iron cycling and residence time at the scale of the global ocean. Our findings indicate that autochthonous, freshly released organic matter plays a critical role in controlling primary productivity and ocean-climate feedbacks in iron-limited oceanic regions.
Suggested Citation
C. S. Hassler & R. Simó & S. E. Fawcett & M. J. Ellwood & S. L. Jaccard, 2025.
"Marine biogenic humic substances control iron biogeochemistry across the Southern Ocean,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57491-5
DOI: 10.1038/s41467-025-57491-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57491-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.