Author
Listed:
- Jun-Lin Yu
(Sichuan University)
- Cong Zhou
(Sichuan University)
- Xiang-Li Ning
(Sichuan University)
- Jun Mou
(Sichuan University)
- Fan-Bo Meng
(Sichuan University)
- Jing-Wei Wu
(Sichuan University)
- Yi-Ting Chen
(Sichuan University)
- Biao-Dan Tang
(Sichuan University)
- Xiang-Gen Liu
(Sichuan University)
- Guo-Bo Li
(Sichuan University)
Abstract
Pharmacophores are abstractions of essential chemical interaction patterns, holding an irreplaceable position in drug discovery. Despite the availability of many pharmacophore tools, the adoption of deep learning for pharmacophore-guided drug discovery remains relatively rare. We herein propose a knowledge-guided diffusion framework for ‘on-the-fly’ 3D ligand-pharmacophore mapping, named DiffPhore. It leverages ligand-pharmacophore matching knowledge to guide ligand conformation generation, meanwhile utilizing calibrated sampling to mitigate the exposure bias of the iterative conformation search process. By training on two self-established datasets of 3D ligand-pharmacophore pairs, DiffPhore achieves state-of-the-art performance in predicting ligand binding conformations, surpassing traditional pharmacophore tools and several advanced docking methods. It also manifests superior virtual screening power for lead discovery and target fishing. Using DiffPhore, we successfully identify structurally distinct inhibitors for human glutaminyl cyclases, and their binding modes are further validated through co-crystallographic analysis. We believe this work will advance the AI-enabled pharmacophore-guided drug discovery techniques.
Suggested Citation
Jun-Lin Yu & Cong Zhou & Xiang-Li Ning & Jun Mou & Fan-Bo Meng & Jing-Wei Wu & Yi-Ting Chen & Biao-Dan Tang & Xiang-Gen Liu & Guo-Bo Li, 2025.
"Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57485-3
DOI: 10.1038/s41467-025-57485-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57485-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.