IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57379-4.html
   My bibliography  Save this article

Genomically defined hypervirulent Klebsiella pneumoniae contributed to early-onset increased mortality

Author

Listed:
  • Yunfei Tang

    (Peking University Third Hospital)

  • Pengcheng Du

    (Capital Medical University)

  • Chunjing Du

    (Peking University Third Hospital)

  • Ping Yang

    (Peking University Third Hospital)

  • Ning Shen

    (Peking University Third Hospital)

  • Thomas A. Russo

    (Buffalo
    Buffalo)

  • Chao Liu

    (Peking University Third Hospital)

Abstract

The presence of all five of the virulence-associated genes iucA, iroB, peg-344, rmpA, and rmpA2 is presently the most accurate genomic means for predicting hypervirulent Klebsiella pneumoniae (hvKp-p). With this longitudinal cohort study, we firstly provide novel insights into the clinical and genomic characteristics of hvKp-p in high-risk regions. Through propensity score matching, we show that hvKp-p is less likely to acquire antimicrobial resistance but develops more severe disease and result in increased mortality. HvKp-p are predominantly isolated from hospital settings and caused pneumonia in majority of the cases. ST23 and KL1 are the most common types in the hvKp-p cohort. Community-acquired and healthcare-associated infections are also identified as independent risk factors for hvKp-p. This genomic definition, albeit imperfect, offers a practical and efficient alternative to murine models, allowing for early identification and timely intervention in clinical settings.

Suggested Citation

  • Yunfei Tang & Pengcheng Du & Chunjing Du & Ping Yang & Ning Shen & Thomas A. Russo & Chao Liu, 2025. "Genomically defined hypervirulent Klebsiella pneumoniae contributed to early-onset increased mortality," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57379-4
    DOI: 10.1038/s41467-025-57379-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57379-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57379-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruobing Wang & Anru Zhang & Shijun Sun & Guankun Yin & Xingyu Wu & Qi Ding & Qi Wang & Fengning Chen & Shuyi Wang & Lucy Dorp & Yawei Zhang & Longyang Jin & Xiaojuan Wang & Francois Balloux & Hui Wang, 2024. "Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11-KL64," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57379-4. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.