IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57347-y.html
   My bibliography  Save this article

Locomotion-dependent auditory gating to the parietal cortex guides multisensory decisions

Author

Listed:
  • Ilsong Choi

    (IBS)

  • Seung-Hee Lee

    (IBS
    KAIST)

Abstract

Decision-making in mammals fundamentally relies on integrating multiple sensory inputs, with conflicting information resolved flexibly based on a dominant sensory modality. However, the neural mechanisms underlying state-dependent changes in sensory dominance remain poorly understood. Our study demonstrates that locomotion in mice shifts auditory-dominant decisions toward visual dominance during audiovisual conflicts. Using circuit-specific calcium imaging and optogenetic manipulations, we found that weakened visual representation in the posterior parietal cortex (PPC) leads to auditory-dominant decisions in stationary mice. Prolonged locomotion, however, promotes visual dominance by inhibiting auditory cortical neurons projecting to the PPC (ACPPC). This shift is mediated by secondary motor cortical neurons projecting to the auditory cortex (M2AC), which specifically inhibit ACPPC neurons without affecting auditory cortical projections to the striatum (ACSTR). Our findings reveal the neural circuit mechanisms underlying auditory gating to the association cortex depending on locomotion states, providing insights into the state-dependent changes in sensory dominance during multisensory decision-making.

Suggested Citation

  • Ilsong Choi & Seung-Hee Lee, 2025. "Locomotion-dependent auditory gating to the parietal cortex guides multisensory decisions," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57347-y
    DOI: 10.1038/s41467-025-57347-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57347-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57347-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57347-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.