IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57185-y.html
   My bibliography  Save this article

Bone morphogenetic protein (BMP) signaling determines neuroblastoma cell fate and sensitivity to retinoic acid

Author

Listed:
  • Min Pan

    (St. Jude Children’s Research Hospital)

  • Yinwen Zhang

    (St. Jude Children’s Research Hospital)

  • William C. Wright

    (St. Jude Children’s Research Hospital)

  • Xueying Liu

    (St. Jude Children’s Research Hospital)

  • Barbara Passaia

    (St. Jude Children’s Research Hospital)

  • Duane Currier

    (St. Jude Children’s Research Hospital)

  • Jonathan Low

    (St. Jude Children’s Research Hospital)

  • Richard H. Chapple

    (St. Jude Children’s Research Hospital)

  • Jacob A. Steele

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Jon P. Connelly

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Bensheng Ju

    (St. Jude Children’s Research Hospital)

  • Emily Plyler

    (St. Jude Children’s Research Hospital)

  • Meifen Lu

    (St. Jude Children’s Research Hospital)

  • Allister J. Loughran

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Lei Yang

    (St. Jude Children’s Research Hospital)

  • Brian J. Abraham

    (St. Jude Children’s Research Hospital)

  • Shondra M. Pruett-Miller

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Burgess Freeman

    (St. Jude Children’s Research Hospital)

  • George E. Campbell

    (St. Jude Children’s Research Hospital)

  • Michael A. Dyer

    (St. Jude Children’s Research Hospital
    Howard Hughes Medical Institute)

  • Taosheng Chen

    (St. Jude Children’s Research Hospital)

  • Elizabeth Stewart

    (St. Jude Children’s Research Hospital)

  • Selene Koo

    (St. Jude Children’s Research Hospital)

  • Heather Sheppard

    (St. Jude Children’s Research Hospital)

  • John Easton

    (St. Jude Children’s Research Hospital)

  • Paul Geeleher

    (St. Jude Children’s Research Hospital)

Abstract

Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo maintenance therapy—a discrepancy that has never been explained. To investigate this, we treat a large cohort of neuroblastoma cell lines with RA and observe that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conduct genome-wide CRISPR knockout screens under RA treatment, which identify bone morphogenic protein (BMP) signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA’s overall potency. We then discover that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA’s ability to clear neuroblastoma cells specifically from the bone marrow, by seemingly mimicking interactions between BMP and RA during normal development.

Suggested Citation

  • Min Pan & Yinwen Zhang & William C. Wright & Xueying Liu & Barbara Passaia & Duane Currier & Jonathan Low & Richard H. Chapple & Jacob A. Steele & Jon P. Connelly & Bensheng Ju & Emily Plyler & Meifen, 2025. "Bone morphogenetic protein (BMP) signaling determines neuroblastoma cell fate and sensitivity to retinoic acid," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57185-y
    DOI: 10.1038/s41467-025-57185-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57185-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57185-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    2. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Samuel W. Brady & Yanling Liu & Xiaotu Ma & Alexander M. Gout & Kohei Hagiwara & Xin Zhou & Jian Wang & Michael Macias & Xiaolong Chen & John Easton & Heather L. Mulder & Michael Rusch & Lu Wang & Joy, 2020. "Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Hilton & Karen Gelmon & Philippe L. Bedard & Dongsheng Tu & Hong Xu & Anna V. Tinker & Rachel Goodwin & Scott A. Laurie & Derek Jonker & Aaron R. Hansen & Zachary W. Veitch & Daniel J. Renouf & L, 2022. "Results of the phase I CCTG IND.231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Stefanie Kirchberger & Mohamed R. Shoeb & Daria Lazic & Andrea Wenninger-Weinzierl & Kristin Fischer & Lisa E. Shaw & Filomena Nogueira & Fikret Rifatbegovic & Eva Bozsaky & Ruth Ladenstein & Bernd Bo, 2024. "Comparative transcriptomics coupled to developmental grading via transgenic zebrafish reporter strains identifies conserved features in neutrophil maturation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Ingrid M. Saldana-Guerrero & Luis F. Montano-Gutierrez & Katy Boswell & Christoph Hafemeister & Evon Poon & Lisa E. Shaw & Dylan Stavish & Rebecca A. Lea & Sara Wernig-Zorc & Eva Bozsaky & Irfete S. F, 2024. "A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    4. Perla Pucci & Liam C. Lee & Miaojun Han & Jamie D. Matthews & Leila Jahangiri & Michaela Schlederer & Eleanor Manners & Annabel Sorby-Adams & Joshua Kaggie & Ricky M. Trigg & Christopher Steel & Lucy , 2024. "Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Guillem Pascual-Pasto & Brendan McIntyre & Margaret G. Hines & Anna M. Giudice & Laura Garcia-Gerique & Jennifer Hoffmann & Pamela Mishra & Stephanie Matlaga & Simona Lombardi & Rawan Shraim & Patrick, 2024. "CAR T-cell-mediated delivery of bispecific innate immune cell engagers for neuroblastoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Melvin Pan & Christiane Zorbas & Maki Sugaya & Kensuke Ishiguro & Miki Kato & Miyuki Nishida & Hai-Feng Zhang & Marco M. Candeias & Akimitsu Okamoto & Takamasa Ishikawa & Tomoyoshi Soga & Hiroyuki Abu, 2022. "Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Benjamin Villalard & Arjan Boltjes & Florie Reynaud & Olivier Imbaud & Karine Thoinet & Ilse Timmerman & Séverine Croze & Emy Theoulle & Gianluigi Atzeni & Joël Lachuer & Jan J. Molenaar & Godelieve A, 2024. "Neuroblastoma plasticity during metastatic progression stems from the dynamics of an early sympathetic transcriptomic trajectory," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    9. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Karin Schmelz & Joern Toedling & Matt Huska & Maja C. Cwikla & Louisa-Marie Kruetzfeldt & Jutta Proba & Peter F. Ambros & Inge M. Ambros & Sengül Boral & Marco Lodrini & Celine Y. Chen & Martin Burker, 2021. "Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57185-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.