IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57112-1.html
   My bibliography  Save this article

Sub-femtomolar drug monitoring via co-calibration mechanism with nanoconfined DNA probes

Author

Listed:
  • Yonghuan Chen

    (Jinan University
    China University of Geosciences)

  • Xiuying Li

    (Jinan University)

  • Xinru Yue

    (Jinan University)

  • Weihua Yu

    (Jinan University)

  • Yuesen Shi

    (Guangdong Province Key Laboratory of Psychoactive Substances Monitoring and Safety)

  • Zilong He

    (Jinan University)

  • Yuanfeng Wang

    (China University of Political Science and Law)

  • Yu Huang

    (China University of Geosciences)

  • Fan Xia

    (China University of Geosciences)

  • Fengyu Li

    (Jinan University
    Zhengzhou University)

Abstract

Synthetic drugs fundamentally reshape the illicit drug market due to their low cost, ease of production, and rapid manufacturing processes. However, current drug detection methods, which rely on complex instruments, have limited applicability and often neglect the influence of pH fluctuations, leading to potential bias and unreliable results. Herein, we propose co-calibration DNA probes on a nanoconfined biosensor (NCBS), covering the range of sweat pH 3–8 to achieve significantly enhanced target signal recognition. The NCBS exhibits a linear response range of 103-108 fM with a low limit of detection (LOD) of 3.58 fM in artificial sweat. Compared to the single-aptamer NCBS, the dual-aptamer NCBS offers a broader linear response range, primarily due to the synergistic effects of changes in surface wettability and the capture of hydrion, which together reduce signal interference in proton transport. The linear response range doubles, and its detection sensitivity improves by 4–5 orders of magnitude compared to existing drug detection methods. This sensing strategy expands the application scope of aptamer-based composite probes, offering an approach for ultra-sensitive drug detection and demonstrating significant potential in sweat sensing and drug monitoring fields.

Suggested Citation

  • Yonghuan Chen & Xiuying Li & Xinru Yue & Weihua Yu & Yuesen Shi & Zilong He & Yuanfeng Wang & Yu Huang & Fan Xia & Fengyu Li, 2025. "Sub-femtomolar drug monitoring via co-calibration mechanism with nanoconfined DNA probes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57112-1
    DOI: 10.1038/s41467-025-57112-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57112-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57112-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengcheng Gao & Qun Ma & Defang Ding & Dagui Wang & Xiaoding Lou & Tianyou Zhai & Fan Xia, 2018. "Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Eleanor Sinclair & Drupad K. Trivedi & Depanjan Sarkar & Caitlin Walton-Doyle & Joy Milne & Tilo Kunath & Anouk M. Rijs & Rob M. A. Bie & Royston Goodacre & Monty Silverdale & Perdita Barran, 2021. "Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Xinchun Li & Tianyou Zhai & Pengcheng Gao & Hongli Cheng & Ruizuo Hou & Xiaoding Lou & Fan Xia, 2018. "Role of outer surface probes for regulating ion gating of nanochannels," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Qun Ma & Yu Li & Rongsheng Wang & Hongquan Xu & Qiujiao Du & Pengcheng Gao & Fan Xia, 2021. "Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Fengjian Chu & Gaosheng Zhao & Wei Wei & Nazifi Sani Shuaibu & Hongru Feng & Yuanjiang Pan & Xiaozhi Wang, 2024. "Wide-energy programmable microwave plasma-ionization for high-coverage mass spectrometry analysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Wei Gao & Sam Emaminejad & Hnin Yin Yin Nyein & Samyuktha Challa & Kevin Chen & Austin Peck & Hossain M. Fahad & Hiroki Ota & Hiroshi Shiraki & Daisuke Kiriya & Der-Hsien Lien & George A. Brooks & Ron, 2016. "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, Nature, vol. 529(7587), pages 509-514, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sangha Kim & Seongjin Park & Jina Choi & Wonseop Hwang & Sunho Kim & In-Suk Choi & Hyunjung Yi & Rhokyun Kwak, 2022. "An epifluidic electronic patch with spiking sweat clearance for event-driven perspiration monitoring," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Xi Tian & Qihang Zeng & Selman A. Kurt & Renee R. Li & Dat T. Nguyen & Ze Xiong & Zhipeng Li & Xin Yang & Xiao Xiao & Changsheng Wu & Benjamin C. K. Tee & Denys Nikolayev & Christopher J. Charles & Jo, 2023. "Implant-to-implant wireless networking with metamaterial textiles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Itsuki Kageyama & Karin Kurata & Shuto Miyashita & Yeongjoo Lim & Shintaro Sengoku & Kota Kodama, 2022. "A Bibliometric Analysis of Wearable Device Research Trends 2001–2022—A Study on the Reversal of Number of Publications and Research Trends in China and the USA," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    5. Veronica Martins Gnecco & Ilaria Pigliautile & Anna Laura Pisello, 2024. "Empowering human–environment well‐being through wearable sensing: Unveiling trends and addressing gaps in the energy transition," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    6. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Guanhua Long & Wanlin Jin & Fan Xia & Yuru Wang & Tianshun Bai & Xingxing Chen & Xuelei Liang & Lian-Mao Peng & Youfan Hu, 2022. "Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Huan Jiang & Christopher Chung & Martin L. Dunn & Kai Yu, 2024. "4D printing of liquid crystal elastomer composites with continuous fiber reinforcement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Xiaoxiang Gao & Xiangjun Chen & Hongjie Hu & Xinyu Wang & Wentong Yue & Jing Mu & Zhiyuan Lou & Ruiqi Zhang & Keren Shi & Xue Chen & Muyang Lin & Baiyan Qi & Sai Zhou & Chengchangfeng Lu & Yue Gu & Xi, 2022. "A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Xia Zhu & Ke Wu & Xiaohang Xie & Stephan W. Anderson & Xin Zhang, 2024. "A robust near-field body area network based on coaxially-shielded textile metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Wonjung Park & Hunkyu Seo & Jeongho Kim & Yeon-Mi Hong & Hayoung Song & Byung Jun Joo & Sumin Kim & Enji Kim & Che-Gyem Yae & Jeonghyun Kim & Jonghwa Jin & Joohee Kim & Yong-ho Lee & Jayoung Kim & Hon, 2024. "In-depth correlation analysis between tear glucose and blood glucose using a wireless smart contact lens," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Dandan Lei & Yixiang Wang & Qixiang Zhang & Shuqi Wang & Lei Jiang & Zhen Zhang, 2025. "High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Mantian Xue & Charles Mackin & Wei-Hung Weng & Jiadi Zhu & Yiyue Luo & Shao-Xiong Lennon Luo & Ang-Yu Lu & Marek Hempel & Elaine McVay & Jing Kong & Tomás Palacios, 2022. "Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Chen, Wei & Mo, Jiliang & Zhao, Jing & Ouyang, Huajiang, 2024. "A two-degree-of-freedom pendulum-based piezoelectric-triboelectric hybrid energy harvester with vibro-impact and bistable mechanism," Energy, Elsevier, vol. 304(C).
    17. Abd Alghani Khamis & Aida Idris & Abdallah Abdellatif & Noor Ashikin Mohd Rom & Taha Khamis & Mohd Sayuti Ab Karim & Shamini Janasekaran & Rusdi Bin Abd Rashid, 2023. "Development and Performance Evaluation of an IoT-Integrated Breath Analyzer," IJERPH, MDPI, vol. 20(2), pages 1-26, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57112-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.