IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57084-2.html
   My bibliography  Save this article

Implantable photoelectrochemical-therapeutic methotrexate monitoring system with dual-atomic docking strategy

Author

Listed:
  • Xiankui Xu

    (East China Normal University)

  • Dawei Xu

    (East China Normal University)

  • Xue Zhou

    (East China Normal University)

  • Jing Huang

    (East China Normal University)

  • Shiting Gu

    (East China Normal University)

  • Zhonghai Zhang

    (East China Normal University)

Abstract

The need for precise modulation of blood concentrations of pharmaceutical molecule, especially for high-risk drugs like Methotrexate (MTX), is underscored by the significant impact of individual variations on treatment efficacy. Achieving selective recognition of pharmaceutical molecules within the complex biological environment is a substantial challenge. To tackle this, we propose a synergistic atomic-molecular docking strategy that utilizes a hybrid-dual single-atom Fe1-Zn1 on a TiO2 photoelectrode to selectively bind to the carboxyl and aminopyrimidine groups of MTX respectively. By integrating this Fe1-Zn1-TiO2 photoelectrode with a microcomputer system, an implantable photoelectrochemical-therapeutic drug monitoring (PEC-TDM) system is developed for real-time, continuous in vivo MTX monitoring. This system facilitates personalized therapeutic decision-making and intelligent drug delivery for individualized cancer therapy, potentially revolutionizing oncological care and enhancing patient outcomes.

Suggested Citation

  • Xiankui Xu & Dawei Xu & Xue Zhou & Jing Huang & Shiting Gu & Zhonghai Zhang, 2025. "Implantable photoelectrochemical-therapeutic methotrexate monitoring system with dual-atomic docking strategy," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57084-2
    DOI: 10.1038/s41467-025-57084-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57084-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57084-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiulong Wei & Xiaoqing Chang & Danielle Butts & Ryan DeBlock & Kun Lan & Junbin Li & Dongliang Chao & Dong-Liang Peng & Bruce Dunn, 2023. "Surface-redox sodium-ion storage in anatase titanium oxide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Naama Kanarek & Heather R. Keys & Jason R. Cantor & Caroline A. Lewis & Sze Ham Chan & Tenzin Kunchok & Monther Abu-Remaileh & Elizaveta Freinkman & Lawrence D. Schweitzer & David M. Sabatini, 2018. "Histidine catabolism is a major determinant of methotrexate sensitivity," Nature, Nature, vol. 559(7715), pages 632-636, July.
    3. Xiangdong Long & Zelong Li & Guang Gao & Peng Sun & Jia Wang & Bingsen Zhang & Jun Zhong & Zheng Jiang & Fuwei Li, 2020. "Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Xiaojian Shi & Bryn Reinstadler & Hardik Shah & Tsz-Leung To & Katie Byrne & Luanna Summer & Sarah E. Calvo & Olga Goldberger & John G. Doench & Vamsi K. Mootha & Hongying Shen, 2022. "Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Tom Nyen & Mélanie Planque & Lilian Wagensveld & Joao A. G. Duarte & Esther A. Zaal & Ali Talebi & Matteo Rossi & Pierre-René Körner & Lara Rizzotto & Stijn Moens & Wout Wispelaere & Regina E. M. Baid, 2022. "Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Haifeng Qi & Yueyue Jiao & Jianglin Duan & Nicholas F. Dummer & Bin Zhang & Yujing Ren & Stuart H. Taylor & Yong Qin & Kathrin Junge & Haijun Jiao & Graham J. Hutchings & Matthias Beller, 2025. "Tandem reductive amination and deuteration over a phosphorus-modified iron center," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Ziwei Dai & Weiyan Zheng & Jason W. Locasale, 2022. "Amino acid variability, tradeoffs and optimality in human diet," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jiajing Pei & Huishan Shang & Junjie Mao & Zhe Chen & Rui Sui & Xuejiang Zhang & Danni Zhou & Yu Wang & Fang Zhang & Wei Zhu & Tao Wang & Wenxing Chen & Zhongbin Zhuang, 2024. "A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Xiaofeng Xiao & Zechao Zhuang & Shuhu Yin & Jiexin Zhu & Tao Gan & Ruohan Yu & Jinsong Wu & Xiaochun Tian & Yanxia Jiang & Dingsheng Wang & Feng Zhao, 2024. "Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Dafu Tang & Ruohan Yu & Yalong Jiang & Jiantao Li & Zerui Yan & Sicheng Fan & Xiaojuan Huang & Sungsik Lee & Tianyi Li & Qingshui Xie & Liqiang Mai & Dong-Liang Peng & Qiulong Wei, 2025. "Electrochemically in situ formed rocksalt phase in titanium dioxide determines pseudocapacitive sodium-ion storage," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Sheng Qian & Feng Xu & Yu Fan & Ningyan Cheng & Huaiguo Xue & Ye Yuan & Romain Gautier & Tengfei Jiang & Jingqi Tian, 2024. "Tailoring coordination environments of single-atom electrocatalysts for hydrogen evolution by topological heteroatom transfer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57084-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.