IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57030-2.html
   My bibliography  Save this article

Controlled macroscopic shape evolution of self-growing polymeric materials

Author

Listed:
  • Xinhong Xiong

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Xiaozhuang Zhou

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Haohui Zhang

    (Georgia Institute of Technology)

  • Michael Aizenberg

    (Harvard University)

  • Yuxing Yao

    (Harvard University)

  • Yuhang Hu

    (Georgia Institute of Technology
    Georgia Institute of Technology)

  • Joanna Aizenberg

    (Harvard University
    Harvard University)

  • Jiaxi Cui

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

Abstract

Living organisms absorb external nutrients to grow, changing their macroscopic shapes to meet various challenges through mass transport and integration. While several strategies have been developed to create dynamic polymers that allow for mainchain remodelings to mimic the growing ability of living organisms, most are limited to simple homogeneous growth without complex control of global geometric transformation during growth. Herein, we report an approach to design controlled, growth-induced shape transformation in synthetic materials, in which significant mass transport within the materials is induced by spatially controlled polymerization leading to reshaping the materials. This method is demonstrated using silicone systems made through anionic ring-opening polymerization (anionic ROP) of octamethylcyclotetrasiloxane (D4) with a strong base as the catalyst. We show that a flat square sample can be transformed into a sphere through growth without the need for remolding and preprogramming. By varying the composition of the monomer mixture provided to the samples, and the modes of triggering and shutting down polymerization, we achieve exquisite control over growing polymeric objects into various sizes and shapes, modulating their mechanical properties, self-healing ability, and availability of active sites for further growth from a desired location. We envision this strategy opening an innovative direction in preparing soft materials with specific shapes or surface morphologies.

Suggested Citation

  • Xinhong Xiong & Xiaozhuang Zhou & Haohui Zhang & Michael Aizenberg & Yuxing Yao & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2025. "Controlled macroscopic shape evolution of self-growing polymeric materials," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57030-2
    DOI: 10.1038/s41467-025-57030-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57030-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57030-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaozhuang Zhou & Yijun Zheng & Haohui Zhang & Li Yang & Yubo Cui & Baiju P. Krishnan & Shihua Dong & Michael Aizenberg & Xinhong Xiong & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2023. "Reversibly growing crosslinked polymers with programmable sizes and properties," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Qifeng Mu & Kunpeng Cui & Zhi Jian Wang & Takahiro Matsuda & Wei Cui & Hinako Kato & Shotaro Namiki & Tomoko Yamazaki & Martin Frauenlob & Takayuki Nonoyama & Masumi Tsuda & Shinya Tanaka & Tasuku Nak, 2022. "Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Juan Xue & Xuewu Yin & Lulu Xue & Chenglin Zhang & Shihua Dong & Li Yang & Yuanlai Fang & Yong Li & Ling Li & Jiaxi Cui, 2022. "Self-growing photonic composites with programmable colors and mechanical properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Lulu Xue & Xinhong Xiong & Baiju P. Krishnan & Fatih Puza & Sheng Wang & Yijun Zheng & Jiaxi Cui, 2020. "Light-regulated growth from dynamic swollen substrates for making rough surfaces," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaozhuang Zhou & Yijun Zheng & Haohui Zhang & Li Yang & Yubo Cui & Baiju P. Krishnan & Shihua Dong & Michael Aizenberg & Xinhong Xiong & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2023. "Reversibly growing crosslinked polymers with programmable sizes and properties," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Qifeng Mu & Kunpeng Cui & Zhi Jian Wang & Takahiro Matsuda & Wei Cui & Hinako Kato & Shotaro Namiki & Tomoko Yamazaki & Martin Frauenlob & Takayuki Nonoyama & Masumi Tsuda & Shinya Tanaka & Tasuku Nak, 2022. "Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Kexin Guo & Xuehan Yang & Chao Zhou & Chuang Li, 2024. "Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Miaomiao Li & Bolun Peng & Quanqian Lyu & Xiaodong Chen & Zhen Hu & Xiujuan Zhang & Bijin Xiong & Lianbin Zhang & Jintao Zhu, 2024. "Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Haoyang Feng & Zhe Chen & Lei Li & Xiaoyang Shao & Wenru Fan & Chen Wang & Lin Song & Krzysztof Matyjaszewski & Xiangcheng Pan & Zhenhua Wang, 2024. "Aerobic mechanochemical reversible-deactivation radical polymerization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Sijie Zhou & Chunhua Zhang & Zhuan Fu & Qimeng Zhu & Zhaozixuan Zhou & Junyao Gong & Na Zhu & Xiaofeng Wang & Xinjie Wei & Liangjun Xia & Weilin Xu, 2024. "Color construction of multi-colored carbon fibers using glucose," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57030-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.