IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56856-0.html
   My bibliography  Save this article

Oligonucleotide subsets selection by single nucleotide resolution barcode identification

Author

Listed:
  • Woojin Kim

    (Gwangju Institute of Science and Technology (GIST))

  • Mingweon Chon

    (Seoul National University)

  • Yoonhae Koh

    (Gwangju Institute of Science and Technology (GIST))

  • Hansol Choi

    (Seoul National University
    Seoul National University
    Harvard Medical School)

  • Eunjin Choi

    (Gwangju Institute of Science and Technology (GIST))

  • Hyewon Park

    (ATG Lifetech Inc.)

  • Yushin Jung

    (ATG Lifetech Inc.)

  • Taehoon Ryu

    (ATG Lifetech Inc.)

  • Sunghoon Kwon

    (Seoul National University
    Seoul National University)

  • Yeongjae Choi

    (Gwangju Institute of Science and Technology (GIST))

Abstract

Effective subset selection from complex oligonucleotide libraries is crucial for genomics, synthetic biology, and DNA data storage. The polymerase chain reaction, foundational for amplifying target subsets is limited by primer design and length for specificity, which constrains the scalability of oligo libraries and increases the synthesis burden for primers. We introduce an oligo subset selection methodology that utilizes sequence-specific cyclic nucleotide synthesis and blocking of the template oligos. This approach eliminates the need for primers for selective hybridization and enables the encoding and selection of hundreds of subsets with barcode lengths of fewer than five nucleotides. Moreover, cyclic selection enables a hierarchical data structure in the oligo library, enhancing the programmability. This advancement offers a scalable and cost-effective solution for handling complex oligo libraries.

Suggested Citation

  • Woojin Kim & Mingweon Chon & Yoonhae Koh & Hansol Choi & Eunjin Choi & Hyewon Park & Yushin Jung & Taehoon Ryu & Sunghoon Kwon & Yeongjae Choi, 2025. "Oligonucleotide subsets selection by single nucleotide resolution barcode identification," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56856-0
    DOI: 10.1038/s41467-025-56856-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56856-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56856-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiongyu Zhang & Chengyu Hou & Changchun Liu, 2024. "CRISPR-powered quantitative keyword search engine in DNA data storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jingdong Tian & Hui Gong & Nijing Sheng & Xiaochuan Zhou & Erdogan Gulari & Xiaolian Gao & George Church, 2004. "Accurate multiplex gene synthesis from programmable DNA microchips," Nature, Nature, vol. 432(7020), pages 1050-1054, December.
    3. Sarah B. Ng & Emily H. Turner & Peggy D. Robertson & Steven D. Flygare & Abigail W. Bigham & Choli Lee & Tristan Shaffer & Michelle Wong & Arindam Bhattacharjee & Evan E. Eichler & Michael Bamshad & D, 2009. "Targeted capture and massively parallel sequencing of 12 human exomes," Nature, Nature, vol. 461(7261), pages 272-276, September.
    4. Huiran Yeom & Yonghee Lee & Taehoon Ryu & Jinsung Noh & Amos Chungwon Lee & Han-Byoel Lee & Eunji Kang & Seo Woo Song & Sunghoon Kwon, 2019. "Barcode-free next-generation sequencing error validation for ultra-rare variant detection," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Kevin N. Lin & Kevin Volkel & James M. Tuck & Albert J. Keung, 2020. "Dynamic and scalable DNA-based information storage," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Nina G. Xie & Michael X. Wang & Ping Song & Shiqi Mao & Yifan Wang & Yuxia Yang & Junfeng Luo & Shengxiang Ren & David Yu Zhang, 2022. "Designing highly multiplex PCR primer sets with Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE)," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Weng & Jiangxue Li & Yi Wu & Xuehao Xiu & Fei Wang & Xiaolei Zuo & Ping Song & Chunhai Fan, 2025. "Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS)," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Federico Innocenti & Gregory M Cooper & Ian B Stanaway & Eric R Gamazon & Joshua D Smith & Snezana Mirkov & Jacqueline Ramirez & Wanqing Liu & Yvonne S Lin & Cliona Moloney & Shelly Force Aldred & Nat, 2011. "Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue," PLOS Genetics, Public Library of Science, vol. 7(5), pages 1-16, May.
    3. Cheng Kai Lim & Jing Wui Yeoh & Aurelius Andrew Kunartama & Wen Shan Yew & Chueh Loo Poh, 2023. "A biological camera that captures and stores images directly into DNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zura Kakushadze & Willie Yu, 2017. "Mutation Clusters from Cancer Exome," Papers 1707.08504, arXiv.org.
    6. Jason Flannick & Joshua M Korn & Pierre Fontanillas & George B Grant & Eric Banks & Mark A Depristo & David Altshuler, 2012. "Efficiency and Power as a Function of Sequence Coverage, SNP Array Density, and Imputation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-13, July.
    7. Thomas J Hoffmann & Bronya J Keats & Noriko Yoshikawa & Catherine Schaefer & Neil Risch & Lawrence R Lustig, 2016. "A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records," PLOS Genetics, Public Library of Science, vol. 12(10), pages 1-20, October.
    8. Benjamin Raimbault & Jean-Philippe Cointet & Pierre-Benoît Joly, 2016. "Mapping the Emergence of Synthetic Biology," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
    9. Michael X. Wang & Esther G. Lou & Nicolae Sapoval & Eddie Kim & Prashant Kalvapalle & Bryce Kille & R. A. Leo Elworth & Yunxi Liu & Yilei Fu & Lauren B. Stadler & Todd J. Treangen, 2024. "Olivar: towards automated variant aware primer design for multiplex tiled amplicon sequencing of pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Ni Huang & Insuk Lee & Edward M Marcotte & Matthew E Hurles, 2010. "Characterising and Predicting Haploinsufficiency in the Human Genome," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
    11. Lifu Song & Feng Geng & Zi-Yi Gong & Xin Chen & Jijun Tang & Chunye Gong & Libang Zhou & Rui Xia & Ming-Zhe Han & Jing-Yi Xu & Bing-Zhi Li & Ying-Jin Yuan, 2022. "Robust data storage in DNA by de Bruijn graph-based de novo strand assembly," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Miao-Xin Li & Johnny S H Kwan & Su-Ying Bao & Wanling Yang & Shu-Leong Ho & Yong-Qiang Song & Pak C Sham, 2013. "Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies," PLOS Genetics, Public Library of Science, vol. 9(1), pages 1-11, January.
    13. Degui Zhi & Rui Chen, 2012. "Statistical Guidance for Experimental Design and Data Analysis of Mutation Detection in Rare Monogenic Mendelian Diseases by Exome Sequencing," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    14. Kirsley Chennen & Thomas Weber & Xavière Lornage & Arnaud Kress & Johann Böhm & Julie Thompson & Jocelyn Laporte & Olivier Poch, 2020. "MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56856-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.