IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56827-5.html
   My bibliography  Save this article

Learning and actioning general principles of cancer cell drug sensitivity

Author

Listed:
  • Francesco Carli

    (Scuola Normale Superiore
    Univerisity of Pisa)

  • Pierluigi Chiaro

    (European Institute of Oncology IRCCS)

  • Mariangela Morelli

    (Fondazione Pisana per la Scienza ONLUS)

  • Chakit Arora

    (Scuola Normale Superiore)

  • Luisa Bisceglia

    (Scuola Normale Superiore)

  • Natalia Oliveira Rosa

    (Scuola Normale Superiore)

  • Alice Cortesi

    (European Institute of Oncology IRCCS)

  • Sara Franceschi

    (Fondazione Pisana per la Scienza ONLUS)

  • Francesca Lessi

    (Fondazione Pisana per la Scienza ONLUS)

  • Anna Luisa Stefano

    (Neurosurgical Department of Spedali Riuniti di Livorno)

  • Orazio Santo Santonocito

    (Neurosurgical Department of Spedali Riuniti di Livorno)

  • Francesco Pasqualetti

    (Azienda Ospedaliera Universitaria Pisana)

  • Paolo Aretini

    (Fondazione Pisana per la Scienza ONLUS)

  • Pasquale Miglionico

    (Scuola Normale Superiore)

  • Giuseppe R. Diaferia

    (European Institute of Oncology IRCCS
    Champalimaud Foundation)

  • Fosca Giannotti

    (Scuola Normale Superiore)

  • Pietro Liò

    (University of Cambridge)

  • Miquel Duran-Frigola

    (Can Sutirà)

  • Chiara Maria Mazzanti

    (Fondazione Pisana per la Scienza ONLUS)

  • Gioacchino Natoli

    (European Institute of Oncology IRCCS)

  • Francesco Raimondi

    (Scuola Normale Superiore)

Abstract

High-throughput screening of drug sensitivity of cancer cell lines (CCLs) holds the potential to unlock anti-tumor therapies. In this study, we leverage such datasets to predict drug response using cell line transcriptomics, focusing on models’ interpretability and deployment on patients’ data. We use large language models (LLMs) to match drug to mechanisms of action (MOA)-related pathways. Genes crucial for prediction are enriched in drug-MOAs, suggesting that our models learn the molecular determinants of response. Furthermore, by using only LLM-curated, MOA-genes, we enhance the predictive accuracy of our models. To enhance translatability, we align RNAseq data from CCLs, used for training, to those from patient samples, used for inference. We validated our approach on TCGA samples, where patients’ best scoring drugs match those prescribed for their cancer type. We further predict and experimentally validate effective drugs for the patients of two highly lethal solid tumors, i.e., pancreatic cancer and glioblastoma.

Suggested Citation

  • Francesco Carli & Pierluigi Chiaro & Mariangela Morelli & Chakit Arora & Luisa Bisceglia & Natalia Oliveira Rosa & Alice Cortesi & Sara Franceschi & Francesca Lessi & Anna Luisa Stefano & Orazio Santo, 2025. "Learning and actioning general principles of cancer cell drug sensitivity," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56827-5
    DOI: 10.1038/s41467-025-56827-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56827-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56827-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    2. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    3. Sebastian Farquhar & Jannik Kossen & Lorenz Kuhn & Yarin Gal, 2024. "Detecting hallucinations in large language models using semantic entropy," Nature, Nature, vol. 630(8017), pages 625-630, June.
    4. Allison Warren & Yejia Chen & Andrew Jones & Tsukasa Shibue & William C. Hahn & Jesse S. Boehm & Francisca Vazquez & Aviad Tsherniak & James M. McFarland, 2021. "Global computational alignment of tumor and cell line transcriptional profiles," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Smriti Chawla & Anja Rockstroh & Melanie Lehman & Ellca Ratther & Atishay Jain & Anuneet Anand & Apoorva Gupta & Namrata Bhattacharya & Sarita Poonia & Priyadarshini Rai & Nirjhar Das & Angshul Majumd, 2022. "Gene expression based inference of cancer drug sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    2. Florian P. Bayer & Manuel Gander & Bernhard Kuster & Matthew The, 2023. "CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Han Jin & Cheng Zhang & Martin Zwahlen & Kalle Feilitzen & Max Karlsson & Mengnan Shi & Meng Yuan & Xiya Song & Xiangyu Li & Hong Yang & Hasan Turkez & Linn Fagerberg & Mathias Uhlén & Adil Mardinoglu, 2023. "Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Lisa Veghini & Davide Pasini & Rui Fang & Pietro Delfino & Dea Filippini & Christian Neander & Caterina Vicentini & Elena Fiorini & Francesca Lupo & Sabrina L. D’Agosto & Carmine Carbone & Antonio Ago, 2024. "Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Felicity J. Ashcroft & Asimina Bourboula & Nur Mahammad & Efrosini Barbayianni & Astrid J. Feuerherm & Thanh Thuy Nguyen & Daiki Hayashi & Maroula G. Kokotou & Konstantinos Alevizopoulos & Edward A. D, 2025. "Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A2 α for targeted cancer therapy," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    12. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Souleymane Abdoul-Azize & Rihab Hami & Gaetan Riou & Céline Derambure & Camille Charbonnier & Jean-Pierre Vannier & Monica L. Guzman & Pascale Schneider & Olivier Boyer, 2024. "Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Carolin Ector & Christoph Schmal & Jeff Didier & Sébastien De Landtsheer & Anna-Marie Finger & Francesca Müller-Marquardt & Johannes H. Schulte & Thomas Sauter & Ulrich Keilholz & Hanspeter Herzel & A, 2024. "Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56827-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.