IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56765-2.html
   My bibliography  Save this article

Inherent strain and kinetic coupling determine the kinetics of ammonia synthesis over Ru nanoparticles

Author

Listed:
  • Yuqi Yang

    (Chalmers University of Technology)

  • Anders Hellman

    (Chalmers University of Technology)

  • Henrik Grönbeck

    (Chalmers University of Technology)

Abstract

The large-scale ammonia synthesis using the Haber-Bosch process is crucial in modern society and the reaction is known to be facile over Ru-based catalysts. Herein, first-principles kinetic Monte Carlo (kMC) simulations are utilized to explore the reaction kinetics on Ru nanoparticles (NPs), extending the current knowledge that is mainly based on calculations of single crystal surfaces. It is only by accounting for the effects of kinetic couplings between different sites and inherent strain in the NPs that experimental turnover frequencies (TOFs) can be reproduced. The enhanced activity of inherently strained NPs is attributed to the co-existence of sites with both tensile and compressive strain, which simultaneously promotes N2 dissociation and NHx (x = 0, 1 and 2) hydrogenation. We propose that kinetic couplings on Ru NPs with tailored strain-patterns offer a strategy to break the limitations of linear scaling relations in the design of ammonia synthesis catalysts.

Suggested Citation

  • Yuqi Yang & Anders Hellman & Henrik Grönbeck, 2025. "Inherent strain and kinetic coupling determine the kinetics of ammonia synthesis over Ru nanoparticles," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56765-2
    DOI: 10.1038/s41467-025-56765-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56765-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56765-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56765-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.