IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56606-2.html
   My bibliography  Save this article

Protective catalytic layer powering activity and stability of electrocatalyst for high-energy lithium-sulfur pouch cell

Author

Listed:
  • Seoa Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Won-Gwang Lim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hyeonjung Jung

    (Seoul National University)

  • Yo Chan Jeong

    (LG Science Park)

  • Cheol-Young Park

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Seung Bo Yang

    (LG Science Park)

  • Chang Hoon Lee

    (LG Science Park)

  • Donghai Wang

    (The Pennsylvania State University)

  • Kwonnam Sohn

    (LG Science Park)

  • Jeong Woo Han

    (Seoul National University)

  • Jinwoo Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

Designing an electrocatalyst that simultaneously satisfies high catalytic activity and surface stability is essential for realizing high-performance lithium-sulfur (Li||S) batteries. Here, we propose an advanced electrocatalyst by constructing a thin protective catalytic layer (PCL) on the surface of metal nanoparticle catalysts. This few atomic layer thicknesses of the PCL composed of pyridinic N embedded graphitic carbon allows electrons to transfer from a metal nanoparticle to pyridinic N, resulting in an optimized p-orbital level of pyridinic N of PCL favorable for highly active conversion reaction of lithium sulfide. Further, PCL suppresses the direct contact of sulfur species with metal electrocatalysts. This surface protection effect inhibits the phase change of metal electrocatalysts to metal sulfide impurities, which maintains a highly active Li||S electrocatalysis for long-term cycling. Consequently, A h-level Li||S pouch cell with >500 W h kg−1 (specific energy based on current collector, anode, separator, electrolyte, and cathode), Coulombic efficiency (>95%), and stable life of 20 cycles was successfully realized.

Suggested Citation

  • Seoa Kim & Won-Gwang Lim & Hyeonjung Jung & Yo Chan Jeong & Cheol-Young Park & Seung Bo Yang & Chang Hoon Lee & Donghai Wang & Kwonnam Sohn & Jeong Woo Han & Jinwoo Lee, 2025. "Protective catalytic layer powering activity and stability of electrocatalyst for high-energy lithium-sulfur pouch cell," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56606-2
    DOI: 10.1038/s41467-025-56606-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56606-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56606-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinyong Tao & Jianguo Wang & Chong Liu & Haotian Wang & Hongbin Yao & Guangyuan Zheng & Zhi Wei Seh & Qiuxia Cai & Weiyang Li & Guangmin Zhou & Chenxi Zu & Yi Cui, 2016. "Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byong-June Lee & Chen Zhao & Jeong-Hoon Yu & Tong-Hyun Kang & Hyean-Yeol Park & Joonhee Kang & Yongju Jung & Xiang Liu & Tianyi Li & Wenqian Xu & Xiao-Bing Zuo & Gui-Liang Xu & Khalil Amine & Jong-Sun, 2022. "Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Saswati Sarmah & Lakhanlal & Biraj Kumar Kakati & Dhanapati Deka, 2023. "Recent advancement in rechargeable battery technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    3. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56606-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.