IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56492-8.html
   My bibliography  Save this article

Mitochondrial KMT9 methylates DLAT to control pyruvate dehydrogenase activity and prostate cancer growth

Author

Listed:
  • Yanhan Jia

    (Klinikum der Universität Freiburg
    a partnership between DKFZ and Medical Center - University of Freiburg)

  • Sheng Wang

    (Klinikum der Universität Freiburg)

  • Sylvia Urban

    (Klinikum der Universität Freiburg)

  • Judith M. Müller

    (Klinikum der Universität Freiburg)

  • Manuela Sum

    (Klinikum der Universität Freiburg)

  • Qing Wang

    (Complete Omics Inc.)

  • Helena Bauer

    (Klinikum der Universität Freiburg)

  • Uwe Schulte

    (University of Freiburg
    University of Freiburg)

  • Heike Rampelt

    (University of Freiburg
    University of Freiburg)

  • Nikolaus Pfanner

    (University of Freiburg
    University of Freiburg)

  • Katrin M. Schüle

    (University of Freiburg)

  • Axel Imhof

    (Ludwig-Maximilians-Universität München)

  • Ignasi Forné

    (Ludwig-Maximilians-Universität München)

  • Christopher Berlin

    (University of Freiburg)

  • August Sigle

    (Klinikum der Universität Freiburg)

  • Christian Gratzke

    (Klinikum der Universität Freiburg)

  • Holger Greschik

    (Klinikum der Universität Freiburg)

  • Eric Metzger

    (Klinikum der Universität Freiburg
    a partnership between DKFZ and Medical Center - University of Freiburg)

  • Roland Schüle

    (Klinikum der Universität Freiburg
    a partnership between DKFZ and Medical Center - University of Freiburg
    University of Freiburg)

Abstract

Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types. Mitochondrial KMT9 regulates PDC activity by monomethylation of its subunit dihydrolipoamide transacetylase (DLAT) at lysine 596. Depletion of KMT9 compromises PDC activity, de novo lipogenesis, and PCa cell proliferation, both in vitro and in a PCa mouse model. Finally, in human patients, levels of mitochondrial KMT9 and DLAT K596me1 correlate with Gleason grade. Together, we present a mechanism of PDC regulation and an example of a histone methyltransferase with nuclear and mitochondrial functions. The dependency of PCa cells on mitochondrial KMT9 allows to develop therapeutic strategies to selectively fight PCa.

Suggested Citation

  • Yanhan Jia & Sheng Wang & Sylvia Urban & Judith M. Müller & Manuela Sum & Qing Wang & Helena Bauer & Uwe Schulte & Heike Rampelt & Nikolaus Pfanner & Katrin M. Schüle & Axel Imhof & Ignasi Forné & Chr, 2025. "Mitochondrial KMT9 methylates DLAT to control pyruvate dehydrogenase activity and prostate cancer growth," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56492-8
    DOI: 10.1038/s41467-025-56492-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56492-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56492-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xi Wang & Marianna Kruithof-de Julio & Kyriakos D. Economides & David Walker & Hailong Yu & M. Vivienne Halili & Ya-Ping Hu & Sandy M. Price & Cory Abate-Shen & Michael M. Shen, 2009. "A luminal epithelial stem cell that is a cell of origin for prostate cancer," Nature, Nature, vol. 461(7263), pages 495-500, September.
    2. Zhihu Ding & Chang-Jiun Wu & Gerald C. Chu & Yonghong Xiao & Dennis Ho & Jingfang Zhang & Samuel R. Perry & Emma S. Labrot & Xiaoqiu Wu & Rosina Lis & Yujin Hoshida & David Hiller & Baoli Hu & Shan Ji, 2011. "SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression," Nature, Nature, vol. 470(7333), pages 269-273, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Fraser & Julie Livingstone & Jeffrey L. Wrana & Antonio Finelli & Housheng Hansen He & Theodorus van der Kwast & Alexandre R. Zlotta & Robert G. Bristow & Paul C. Boutros, 2021. "Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Antti Kiviaho & Sini K. Eerola & Heini M. L. Kallio & Maria K. Andersen & Miina Hoikka & Aliisa M. Tiihonen & Iida Salonen & Xander Spotbeen & Alexander Giesen & Charles T. A. Parker & Sinja Taavitsai, 2024. "Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ni Li & Qiuli Liu & Ying Han & Siyu Pei & Bisheng Cheng & Junyu Xu & Xiang Miao & Qiang Pan & Hanling Wang & Jiacheng Guo & Xuege Wang & Guoying Zhang & Yannan Lian & Wei Zhang & Yi Zang & Minjia Tan , 2022. "ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Huiqiang Cai & Bin Zhang & Johanne Ahrenfeldt & Justin V. Joseph & Maria Riedel & Zongliang Gao & Sofie K. Thomsen & Ditte S. Christensen & Rasmus O. Bak & Henrik Hager & Mikkel H. Vendelbo & Xin Gao , 2024. "CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Tianyu Zhu & Huige Tong & Zhaozhen Du & Stephan Beck & Andrew E. Teschendorff, 2024. "An improved epigenetic counter to track mitotic age in normal and precancerous tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Hubert Pakula & Mohamed Omar & Ryan Carelli & Filippo Pederzoli & Giuseppe Nicolò Fanelli & Tania Pannellini & Fabio Socciarelli & Lucie Van Emmenis & Silvia Rodrigues & Caroline Fidalgo-Ribeiro & Pie, 2024. "Distinct mesenchymal cell states mediate prostate cancer progression," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56492-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.