Author
Listed:
- Xinyu Duan
(Zhejiang University of Technology)
- Dong Cui
(Zhejiang University of Technology)
- Mengdi Wang
(Zhejiang University of Technology)
- Chenlu Jin
(Zhejiang University of Technology)
- Xiaochen Cai
(Zhejiang University of Technology)
- Zhiguo Wang
(Hangzhou Normal University)
- Jian Xu
(Zhejiang University of Technology)
Abstract
The introduction of fluoroalkyl groups into pharmaceutical compounds has the potential to enhance their therapeutic properties. Nevertheless, the synthesis of enantiomerically pure C(sp³)–CF₃ compounds poses a significant challenge. Biocatalysis offers precise stereochemical control, however, the scarcity of fluorine-containing natural products makes it difficult to find enzymes capable of incorporating fluoroalkyl groups. Herein, we develop a ground-state flavin-dependent enzyme-catalyzed strategy for the radical-mediated enantioselective trifluoromethylation. Two engineered flavin-dependent enzymes are successfully developed to catalyze stereoselective hydrotrifluoromethylation and trifluoromethyl-alkyl cross-electrophile coupling reactions using trifluoromethyl thianthrenium triflate as a radical donor. Experimental investigations and computational simulations demonstrate that the reaction is initiated through single-electron transfer from the ground state flavin hydroquinone (FMNhq) and quenched through hydrogen atom transfer by flavin semiquinone (FMNsq). This strategy provides an opportunity to bridge the gap between biocatalysis and organic fluorides but also introduces an alternative approach to address challenging stereoselective fluoroalkylation reactions in organic synthesis.
Suggested Citation
Xinyu Duan & Dong Cui & Mengdi Wang & Chenlu Jin & Xiaochen Cai & Zhiguo Wang & Jian Xu, 2025.
"Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56437-1
DOI: 10.1038/s41467-025-56437-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56437-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.