IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56400-0.html
   My bibliography  Save this article

Polygenic burden of short tandem repeat expansions promotes risk for Alzheimer’s disease

Author

Listed:
  • Michael H. Guo

    (University of Pennsylvania
    University of Pennsylvania)

  • Wan-Ping Lee

    (University of Pennsylvania)

  • Badri Vardarajan

    (Columbia University)

  • Gerard D. Schellenberg

    (University of Pennsylvania)

  • Jennifer E. Phillips-Cremins

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

Studies of the genetics of Alzheimer’s disease (AD) have largely focused on single nucleotide variants and short insertions/deletions. However, most of the disease heritability has yet to be uncovered, suggesting that there is substantial genetic risk conferred by other forms of genetic variation. There are over one million short tandem repeats (STRs) in the genome, and their link to AD risk has not been assessed. As pathogenic expansions of STR cause over 30 neurologic diseases, it is important to ascertain whether STRs may also be implicated in AD risk. Here, we genotype 312,731 polymorphic STR tracts genome-wide using PCR-free whole genome sequencing data from 2981 individuals (1489 AD case and 1492 control individuals). We implement an approach to identify STR expansions as STRs with tract lengths that are outliers from the population. We then test for differences in aggregate burden of expansions in case versus control individuals. AD patients harbor a 1.19-fold increase of STR expansions compared to healthy elderly controls (p = 8.27×10-3, two-sided Mann-Whitney test). Individuals carrying >30 STR expansions have a 3.69-fold higher odds of having AD and have more severe AD neuropathology. AD STR expansions are highly enriched within active promoters in post-mortem hippocampal brain tissues and particularly within SINE-VNTR-Alu (SVA) retrotransposons. Together, these results demonstrate that expanded STRs within active promoter regions of the genome associate with risk of AD.

Suggested Citation

  • Michael H. Guo & Wan-Ping Lee & Badri Vardarajan & Gerard D. Schellenberg & Jennifer E. Phillips-Cremins, 2025. "Polygenic burden of short tandem repeat expansions promotes risk for Alzheimer’s disease," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56400-0
    DOI: 10.1038/s41467-025-56400-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56400-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56400-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56400-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.