IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56312-z.html
   My bibliography  Save this article

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone

Author

Listed:
  • Baoyun Wang

    (Lanzhou University)

  • Jin Liu

    (Yanshan University)

  • Yanyao Zhang

    (Stanford University)

  • Baisheng Nie

    (Chongqing University)

  • Wei Yang

    (Chinese Academy of Sciences)

  • Jialong Hao

    (Chinese Academy of Sciences)

  • Xing Ding

    (Chinese Academy of Sciences)

  • Yongjun Tian

    (Yanshan University)

Abstract

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry. These single crystals are synthesized at 15.5–22.0 GPa and 1400–1700 °C, featuring pervasive structural disorders. In particular, Al and Si atoms extensively occupy new tetrahedral and octahedral sites that are nominally vacant in their ordered counterparts. High temperature activates disorders leading to variable local crystal structures and more hydrogen incorporation into the crystal structure. This result suggests that the order-to-disorder transition holds the key to the high thermal stability of hydrous aluminosilicates, significantly affecting the water cycle in the deep mantle.

Suggested Citation

  • Baoyun Wang & Jin Liu & Yanyao Zhang & Baisheng Nie & Wei Yang & Jialong Hao & Xing Ding & Yongjun Tian, 2025. "High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56312-z
    DOI: 10.1038/s41467-025-56312-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56312-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56312-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah E. Mazza & Esteban Gazel & Michael Bizimis & Robert Moucha & Paul Béguelin & Elizabeth A. Johnson & Ryan J. McAleer & Alexander V. Sobolev, 2019. "Author Correction: Sampling the volatile-rich transition zone beneath Bermuda," Nature, Nature, vol. 571(7765), pages 9-9, July.
    2. Sarah E. Mazza & Esteban Gazel & Michael Bizimis & Robert Moucha & Paul Béguelin & Elizabeth A. Johnson & Ryan J. McAleer & Alexander V. Sobolev, 2019. "Sampling the volatile-rich transition zone beneath Bermuda," Nature, Nature, vol. 569(7756), pages 398-403, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Yu Zhang & Li-Hui Chen & Xiao-Jun Wang & Takeshi Hanyu & Albrecht W. Hofmann & Tsuyoshi Komiya & Kentaro Nakamura & Yasuhiro Kato & Gang Zeng & Wen-Xian Gou & Wei-Qiang Li, 2022. "Zinc isotopic evidence for recycled carbonate in the deep mantle," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Xiaohui Li & Osamu Ishizuka & Robert J. Stern & Sanzhong Li & Zhiqing Lai & Ian Somerville & Yanhui Suo & Long Chen & Hongxia Yu, 2024. "A HIMU-like component in Mariana Convergent Margin magma sources during initial arc rifting revealed by melt inclusions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56312-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.