Author
Listed:
- Oscar Gallardo-Navarro
(Weizmann Institute of Science)
- Rinat Arbel-Goren
(Weizmann Institute of Science)
- Elias August
(Reykjavik University)
- Gabriela Olmedo-Alvarez
(CINVESTAV Unidad Irapuato)
- Joel Stavans
(Weizmann Institute of Science)
Abstract
Active matter, from motile bacteria to animals, can exhibit striking collective and coherent behavior. Despite significant advances in understanding the behavior of homogeneous systems, little is known about the self-organization and dynamics of heterogeneous active matter, such as complex and diverse bacterial communities. Under oxygen gradients, many bacterial species swim towards air-liquid interfaces in auto-organized, directional bioconvective flows, whose spatial scales exceed the cell size by orders of magnitude. Here we show that multispecies bacterial suspensions undergoing oxytactic-driven bioconvection exhibit dynamically driven spatial segregation, despite the enhanced mixing of bioconvective flows, and the fact that these species coexist in their natural habitat. Segregation is observed as patterns of spatially interlocked domains, with local dominance of one of the constituent species in the suspension. Our findings suggest that segregation mechanisms are driven by species-specific motile behaviors under conditions of hydrodynamic flow, rather than biochemical repulsion. Thus, species with different motile characteristics in the same ecological context can enhance their access to limiting resources. This work provides novel insights on the role of heterogeneity in active matter, as well as on the dynamics of complex microbial communities, their spatial organization and their collective behavior.
Suggested Citation
Oscar Gallardo-Navarro & Rinat Arbel-Goren & Elias August & Gabriela Olmedo-Alvarez & Joel Stavans, 2025.
"Dynamically induced spatial segregation in multispecies bacterial bioconvection,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56244-8
DOI: 10.1038/s41467-025-56244-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56244-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.