IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56162-9.html
   My bibliography  Save this article

Incremental accumulation of linguistic context in artificial and biological neural networks

Author

Listed:
  • Refael Tikochinski

    (Technion - Israel Institute of Technology)

  • Ariel Goldstein

    (The Hebrew University of Jerusalem)

  • Yoav Meiri

    (Technion - Israel Institute of Technology)

  • Uri Hasson

    (Princeton University)

  • Roi Reichart

    (Technion - Israel Institute of Technology)

Abstract

Large Language Models (LLMs) have shown success in predicting neural signals associated with narrative processing, but their approach to integrating context over large timescales differs fundamentally from that of the human brain. In this study, we show how the brain, unlike LLMs that process large text windows in parallel, integrates short-term and long-term contextual information through an incremental mechanism. Using fMRI data from 219 participants listening to spoken narratives, we first demonstrate that LLMs predict brain activity effectively only when using short contextual windows of up to a few dozen words. Next, we introduce an alternative LLM-based incremental-context model that combines incoming short-term context with an aggregated, dynamically updated summary of prior context. This model significantly enhances the prediction of neural activity in higher-order regions involved in long-timescale processing. Our findings reveal how the brain’s hierarchical temporal processing mechanisms enable the flexible integration of information over time, providing valuable insights for both cognitive neuroscience and AI development.

Suggested Citation

  • Refael Tikochinski & Ariel Goldstein & Yoav Meiri & Uri Hasson & Roi Reichart, 2025. "Incremental accumulation of linguistic context in artificial and biological neural networks," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56162-9
    DOI: 10.1038/s41467-025-56162-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56162-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56162-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander G. Huth & Wendy A. de Heer & Thomas L. Griffiths & Frédéric E. Theunissen & Jack L. Gallant, 2016. "Natural speech reveals the semantic maps that tile human cerebral cortex," Nature, Nature, vol. 532(7600), pages 453-458, April.
    2. Charlotte Caucheteux & Alexandre Gramfort & Jean-Rémi King, 2023. "Evidence of a predictive coding hierarchy in the human brain listening to speech," Nature Human Behaviour, Nature, vol. 7(3), pages 430-441, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreejan Kumar & Theodore R. Sumers & Takateru Yamakoshi & Ariel Goldstein & Uri Hasson & Kenneth A. Norman & Thomas L. Griffiths & Robert D. Hawkins & Samuel A. Nastase, 2024. "Shared functional specialization in transformer-based language models and the human brain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Keiko Ohmae & Shogo Ohmae, 2024. "Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Chandan Singh & Armin Askari & Rich Caruana & Jianfeng Gao, 2023. "Augmenting interpretable models with large language models during training," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Katherine Farrow & Gilles Grolleau & Naoufel Mzoughi, 2018. "What in the Word! The Scope for the Effect of Word Choice on Economic Behavior," Kyklos, Wiley Blackwell, vol. 71(4), pages 557-580, November.
    5. Sam V Norman-Haignere & Josh H McDermott, 2018. "Neural responses to natural and model-matched stimuli reveal distinct computations in primary and nonprimary auditory cortex," PLOS Biology, Public Library of Science, vol. 16(12), pages 1-46, December.
    6. Beau Sievers & Christopher Welker & Uri Hasson & Adam M. Kleinbaum & Thalia Wheatley, 2024. "Consensus-building conversation leads to neural alignment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Lorenza Lucchi Basili & Pier Luigi Sacco, 2017. "Tie-Up Cycles in Long-Term Mating. Part II: Fictional Narratives and the Social Cognition of Mating," Challenges, MDPI, vol. 8(1), pages 1-60, February.
    8. Timothy N Rubin & Oluwasanmi Koyejo & Krzysztof J Gorgolewski & Michael N Jones & Russell A Poldrack & Tal Yarkoni, 2017. "Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    9. Francesca Setti & Giacomo Handjaras & Davide Bottari & Andrea Leo & Matteo Diano & Valentina Bruno & Carla Tinti & Luca Cecchetti & Francesca Garbarini & Pietro Pietrini & Emiliano Ricciardi, 2023. "A modality-independent proto-organization of human multisensory areas," Nature Human Behaviour, Nature, vol. 7(3), pages 397-410, March.
    10. Desjardins, Christoph, 2021. "Don't be too SMART, but SAVE your goals: Proposal for a renewed goal-setting formula for Generation Y," Journal of Applied Leadership and Management, Hochschule Kempten - University of Applied Sciences, Professional School of Business & Technology, vol. 9, pages 73-87.
    11. Charlotte Caucheteux & Alexandre Gramfort & Jean-Rémi King, 2023. "Evidence of a predictive coding hierarchy in the human brain listening to speech," Nature Human Behaviour, Nature, vol. 7(3), pages 430-441, March.
    12. Maryam Honari-Jahromi & Brea Chouinard & Esti Blanco-Elorrieta & Liina Pylkkänen & Alona Fyshe, 2021. "Neural representation of words within phrases: Temporal evolution of color-adjectives and object-nouns during simple composition," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-17, March.
    13. Xue L. Gong & Alexander G. Huth & Fatma Deniz & Keith Johnson & Jack L. Gallant & Frédéric E. Theunissen, 2023. "Phonemic segmentation of narrative speech in human cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Zsuzsanna Kocsis & Rick L. Jenison & Peter N. Taylor & Ryan M. Calmus & Bob McMurray & Ariane E. Rhone & McCall E. Sarrett & Carolina Deifelt Streese & Yukiko Kikuchi & Phillip E. Gander & Joel I. Ber, 2023. "Immediate neural impact and incomplete compensation after semantic hub disconnection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Laurent Caplette & Nicholas B. Turk-Browne, 2024. "Computational reconstruction of mental representations using human behavior," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. David M Alexander & Tonio Ball & Andreas Schulze-Bonhage & Cees van Leeuwen, 2019. "Large-scale cortical travelling waves predict localized future cortical signals," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-34, November.
    17. Ariel Goldstein & Avigail Grinstein-Dabush & Mariano Schain & Haocheng Wang & Zhuoqiao Hong & Bobbi Aubrey & Samuel A. Nastase & Zaid Zada & Eric Ham & Amir Feder & Harshvardhan Gazula & Eliav Buchnik, 2024. "Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Sebastian P. H. Speer & Laetitia Mwilambwe-Tshilobo & Lily Tsoi & Shannon M. Burns & Emily B. Falk & Diana I. Tamir, 2024. "Hyperscanning shows friends explore and strangers converge in conversation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Ediz Sohoglu & Loes Beckers & Matthew H. Davis, 2024. "Convergent neural signatures of speech prediction error are a biological marker for spoken word recognition," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56162-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.