IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55759-w.html
   My bibliography  Save this article

Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten

Author

Listed:
  • Xi Zhang

    (University of Stuttgart)

  • Sergiy V. Divinski

    (University of Münster)

  • Blazej Grabowski

    (University of Stuttgart)

Abstract

The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level. With the aid of a bespoke machine-learning interatomic potential, the temperature-dependent vacancy formation and migration Gibbs energies of the prototype system body-centered cubic (BCC) tungsten are shown to be strongly affected by anharmonicity. This finding explains the physical origin of the experimentally observed non-Arrhenius behavior of tungsten self-diffusion. A remarkable agreement between the calculated and experimental temperature-dependent self-diffusivity and, in particular, its curvature is revealed. The proposed computational framework is robust and broadly applicable, as evidenced by first tests for a hexagonal close-packed (HCP) multicomponent high-entropy alloy. The successful applications underscore the attainability of an accurate ab initio diffusion database.

Suggested Citation

  • Xi Zhang & Sergiy V. Divinski & Blazej Grabowski, 2025. "Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55759-w
    DOI: 10.1038/s41467-024-55759-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55759-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55759-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55759-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.