Author
Listed:
- Jean-Daniel Malcor
(CNRS UMR 5305 University of Lyon)
- Noelia Ferruz
(University of Bayreuth
Centre for Genomic Regulation)
- Sergio Romero-Romero
(University of Bayreuth
Universidad Nacional Autónoma de México)
- Surbhi Dhingra
(University of Bayreuth)
- Vamika Sagar
(University of Bayreuth)
- Abhishek A. Jalan
(University of Bayreuth
University of Bayreuth)
Abstract
Collagen proteins contain a characteristic structural motif called a triple helix. During the self-assembly of this motif, three polypeptides form a folding nucleus at the C-termini and then propagate towards the N-termini like a zip-chain. While polypeptides from human collagens contain up to a 1000 amino acids, those found in bacteria can contain up to 6000 amino acids. Additionally, the collagen polypeptides are also frequently interrupted by non-helical sequences that disrupt folding and reduce stability. Given the length of polypeptides and the disruptive interruptions, compensating mechanisms that stabilize against local unfolding during propagation and offset the entropic cost of folding are not fully understood. Here, we show that the information for the correct folding of collagen triple helices is encoded in their sequence as interchain electrostatic interactions, which likely act as molecular clamps that prevent local unfolding. In the case of humans, disrupting these electrostatic interactions is associated with severe to lethal diseases.
Suggested Citation
Jean-Daniel Malcor & Noelia Ferruz & Sergio Romero-Romero & Surbhi Dhingra & Vamika Sagar & Abhishek A. Jalan, 2025.
"Deciphering the folding code of collagens,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54046-y
DOI: 10.1038/s41467-024-54046-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54046-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.