Author
Listed:
- Mingchun Chai
(Guilin University of Technology)
- Anthony E. Williams-Jones
(McGill University)
- Wei Fu
(Guilin University of Technology)
- Jianwei Li
(China University of Geosciences
China University of Geosciences)
- Cheng Xu
(Guilin University of Technology
Peking University
Guilin University of Technology)
Abstract
Silver deposits have long been considered to form due to the direct precipitation of silver minerals from aqueous fluids, in which the metal is transported as chloride and/or bisulfide complexes. Ultra-high-grade silver ores have silver contents up to tens of weight-percent in the form of silver sulfides and native silver. Ore-forming fluids of most silver deposits, however, typically contain low silver contents of parts per million silver. The challenge is to explain how fluids with such low concentrations of silver can form ultra-high-grade silver ores. Here, we present direct mineralogical evidence from natural samples showing that the high-grade silver ores form from the aggregation of silver sulfide nanoparticles through intermediate microparticles and dendrites to acanthite crystals. Native silver grows from silver sulfides via solid-state silver ion aggregation. This study traces the formation of silver sulfides from their nanoparticulate precursors, thereby providing insights into the genesis of ultra-high-grade silver ores in a variety of metallogenic settings.
Suggested Citation
Mingchun Chai & Anthony E. Williams-Jones & Wei Fu & Jianwei Li & Cheng Xu, 2024.
"The hyper-enrichment of silver through the aggregation of silver sulfide nanoparticles,"
Nature Communications, Nature, vol. 15(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54726-9
DOI: 10.1038/s41467-024-54726-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54726-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.