Author
Listed:
- José D. Cojal González
(Humboldt-Universität zu Berlin)
- Jakub Rondomanski
(Freie Universität Berlin)
- Konrad Polthier
(Freie Universität Berlin)
- Jürgen P. Rabe
(Humboldt-Universität zu Berlin)
- Carlos-Andres Palma
(Humboldt-Universität zu Berlin
Chinese Academy of Sciences)
Abstract
In topological band theory, phonon boundary modes consequence of a topologically non-trivial band structure feature desirable properties for atomically-precise technologies, such as robustness against defects, waveguiding, and one-way transport. These topological phonon boundary modes remain to be studied both theoretically and experimentally in synthetic materials, such as polymers and supramolecular assemblies at the atomistic level under thermal fluctuations. Here we show by means of molecular simulations, that surface-confined Su-Schrieffer-Heeger (SSH) phonon analogue models express robust topological phonon boundary modes at heavy boundaries and under thermal fluctuations. The resulting bulk-heavy boundary correspondence enables patterning of boundary modes in polymer chains and weakly-interacting supramolecular lattices. Moreover, we show that upon excitation of a single molecule, propagation along heavy-boundary modes differs from free boundary modes. Our work is an entry to topological vibrations in supramolecular systems, and may find applications in the patterning of phonon circuits and realization of Hall effect phonon analogues at the molecular scale.
Suggested Citation
José D. Cojal González & Jakub Rondomanski & Konrad Polthier & Jürgen P. Rabe & Carlos-Andres Palma, 2024.
"Heavy-boundary mode patterning and dynamics of topological phonons in polymer chains and supramolecular lattices on surfaces,"
Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54511-8
DOI: 10.1038/s41467-024-54511-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54511-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.