IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54481-x.html
   My bibliography  Save this article

Prebiotic formation of enantiomeric excess D-amino acids on natural pyrite

Author

Listed:
  • Ruiqi Li

    (Tongji University)

  • Quanzheng Deng

    (Tongji University)

  • Lu Han

    (Tongji University)

  • Tianwei Ouyang

    (Shanghai Jiao Tong University)

  • Shunai Che

    (Tongji University
    Shanghai Jiao Tong University)

  • Yuxi Fang

    (Shanghai Jiao Tong University)

Abstract

D-amino acids, found in excess in a minority of organisms and crucial for marine invertebrates, contrast with the more common L-amino acids in most life forms. The local prebiotic origin of D-amino acid enantiomeric excess in natural systems remains an unsolved conundrum. Herein, we demonstrate the formation of enantiomeric excess (ee) D-amino acids through photocatalytic reductive amination of α-keto acids on natural pyrite. Various amino acids with ee values in the range of 14.5–42.4%, are formed. The wavy arrangement of atoms on the surface of pyrite is speculated to lead to the preferential formation of D-amino acids. This work reveals the intrinsic asymmetric photocatalytic activity of pyrite, which could expand understandings on mechanism of asymmetric catalysis and chirality of inorganic crystals. Furthermore, it provides a plausible pathway for the prebiotic formation of D-amino acids, adding further evidence to the origin of D-amino acids enantiomeric excess in natural systems.

Suggested Citation

  • Ruiqi Li & Quanzheng Deng & Lu Han & Tianwei Ouyang & Shunai Che & Yuxi Fang, 2024. "Prebiotic formation of enantiomeric excess D-amino acids on natural pyrite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54481-x
    DOI: 10.1038/s41467-024-54481-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54481-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54481-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. L. J. A. Rikken & E. Raupach, 2000. "Enantioselective magnetochiral photochemistry," Nature, Nature, vol. 405(6789), pages 932-935, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo I Cruz-Rosas & Francisco Riquelme & Patricia Santiago & Luis Rendón & Thomas Buhse & Fernando Ortega-Gutiérrez & Raúl Borja-Urby & Doroteo Mendoza & Carlos Gaona & Pedro Miramontes & Germinal Coc, 2019. "Multiwall and bamboo-like carbon nanotubes from the Allende chondrite: A probable source of asymmetry," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    2. María-Paz Zorzano & Susana Osuna-Esteban & Marta Ruiz-Bermejo & Cesar Menor-Salván & Sabino Veintemillas-Verdaguer, 2014. "Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields," Challenges, MDPI, vol. 5(1), pages 1-18, June.
    3. Daowang Peng & Chenglin Gu & Zhong Zuo & Yuanfeng Di & Xing Zou & Lulu Tang & Lunhua Deng & Daping Luo & Yang Liu & Wenxue Li, 2023. "Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Shan Guo & Wen-Wen Zhan & Feng-Lei Yang & Jie Zhou & Yu-Hao Duan & Dawei Zhang & Yang Yang, 2024. "Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D2h-symmetric anions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54481-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.