IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53981-0.html
   My bibliography  Save this article

The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain

Author

Listed:
  • Kwangbeom Hyun

    (Korea Advanced Institute of Science and Technology)

  • Jihye Ahn

    (Korea Advanced Institute of Science and Technology)

  • Hyoungmin Kim

    (Korea Advanced Institute of Science and Technology)

  • Jihyun Kim

    (Korea Advanced Institute of Science and Technology)

  • Yong-In Kim

    (Korea Research Institute of Standards and Science)

  • Hee-Sung Park

    (Korea Advanced Institute of Science and Technology)

  • Robert G. Roeder

    (The Rockefeller University)

  • J. Eugene Lee

    (Korea Research Institute of Standards and Science)

  • Jaehoon Kim

    (Korea Advanced Institute of Science and Technology)

Abstract

Histone post-translational modifications play pivotal roles in eukaryotic gene expression. To date, most studies have focused on modifications in unstructured histone N-terminal tail domains and their binding proteins. However, transcriptional regulation by chromatin-effector proteins that directly recognize modifications in histone globular domains has yet to be clearly demonstrated, despite the richness of their multiple modifications. Here, we show that the ATP-dependent chromatin-remodeling BAF complex stimulates p53-dependent transcription through direct interaction with H3K56ac located on the lateral surface of the histone globular domain. Mechanistically, the BAF complex recognizes nucleosomal H3K56ac via the DPF domain in the DPF2 subunit and exhibits enhanced nucleosome-remodeling activity in the presence of H3K56ac. We further demonstrate that a defect in H3K56ac–BAF complex interaction leads to impaired p53-dependent gene expression and DNA damage responses. Our study provides direct evidence that histone globular domain modifications participate in the regulation of gene expression.

Suggested Citation

  • Kwangbeom Hyun & Jihye Ahn & Hyoungmin Kim & Jihyun Kim & Yong-In Kim & Hee-Sung Park & Robert G. Roeder & J. Eugene Lee & Jaehoon Kim, 2024. "The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53981-0
    DOI: 10.1038/s41467-024-53981-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53981-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53981-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Han & Alexis A Reyes & Sara Malik & Yuan He, 2020. "Cryo-EM structure of SWI/SNF complex bound to a nucleosome," Nature, Nature, vol. 579(7799), pages 452-455, March.
    2. Lei Zeng & Qiang Zhang & SiDe Li & Alexander N. Plotnikov & Martin J. Walsh & Ming-Ming Zhou, 2010. "Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b," Nature, Nature, vol. 466(7303), pages 258-262, July.
    3. Jiajing Chen & Zikang Wang & Xudong Guo & Fudong Li & Qingtao Wei & Xuwen Chen & Deshun Gong & Yanxin Xu & Wen Chen & Yongrui Liu & Jiuhong Kang & Yunyu Shi, 2019. "TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    4. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanhuan Cui & Hongyang Yi & Hongyu Bao & Ying Tan & Chi Tian & Xinyao Shi & Diwen Gan & Bin Zhang & Weizheng Liang & Rui Chen & Qionghua Zhu & Liang Fang & Xin Gao & Hongda Huang & Ruijun Tian & Silk, 2022. "The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Mingyue Guo & Fengjun Yang & Lijuan Zhu & Leilei Wang & Zhichao Li & Zhenyu Qi & Vasileios Fotopoulos & Jingquan Yu & Jie Zhou, 2024. "Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Li Wang & Jiali Yu & Zishuo Yu & Qianmin Wang & Wanjun Li & Yulei Ren & Zhenguo Chen & Shuang He & Yanhui Xu, 2022. "Structure of nucleosome-bound human PBAF complex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Lunying Wu & Xiaohui Jing & Baolan Zhang & Shoujun Chen & Ran Xu & Penggen Duan & Danni Zou & Shengjian Huang & Tingbo Zhou & Chengcai An & Yuehua Luo & Yunhai Li, 2022. "A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Yanli Cheng & Zhongtian Shen & Yaqi Gao & Feilong Chen & Huisha Xu & Qinling Mo & Xinlei Chu & Chang-liang Peng & Takese T. McKenzie & Bridgitte E. Palacios & Jian Hu & Hao Zhou & Jiafu Long, 2022. "Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53981-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.