IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53762-9.html
   My bibliography  Save this article

New-to-nature CO2-dependent acetyl-CoA assimilation enabled by an engineered B12-dependent acyl-CoA mutase

Author

Listed:
  • Helena Schulz-Mirbach

    (Max Planck Institute for Terrestrial Microbiology)

  • Philipp Wichmann

    (Max Planck Institute for Terrestrial Microbiology)

  • Ari Satanowski

    (Max Planck Institute for Terrestrial Microbiology
    Max Planck Institute of Molecular Plant Physiology)

  • Helen Meusel

    (Max Planck Institute of Molecular Plant Physiology)

  • Tong Wu

    (Max Planck Institute of Molecular Plant Physiology)

  • Maren Nattermann

    (Max Planck Institute for Terrestrial Microbiology)

  • Simon Burgener

    (Max Planck Institute for Terrestrial Microbiology)

  • Nicole Paczia

    (Max Planck Institute for Terrestrial Microbiology)

  • Arren Bar-Even

    (Max Planck Institute of Molecular Plant Physiology)

  • Tobias J. Erb

    (Max Planck Institute for Terrestrial Microbiology
    Center for Synthetic Microbiology (SYNMIKRO))

Abstract

Acetyl-CoA is a key metabolic intermediate and the product of various natural and synthetic one-carbon (C1) assimilation pathways. While an efficient conversion of acetyl-CoA into other central metabolites, such as pyruvate, is imperative for high biomass yields, available aerobic pathways typically release previously fixed carbon in the form of CO2. To overcome this loss of carbon, we develop a new-to-nature pathway, the Lcm module, in this study. The Lcm module provides a direct link between acetyl-CoA and pyruvate, is shorter than any other oxygen-tolerant route and notably fixes CO2, instead of releasing it. The Lcm module relies on the new-to-nature activity of a coenzyme B12-dependent mutase for the conversion of 3-hydroxypropionyl-CoA into lactyl-CoA. We demonstrate Lcm activity of the scaffold enzyme 2-hydroxyisobutyryl-CoA mutase from Bacillus massiliosenegalensis, and further improve catalytic efficiency 10-fold by combining in vivo targeted hypermutation and adaptive evolution in an engineered Escherichia coli selection strain. Finally, in a proof-of-principle, we demonstrate the complete Lcm module in vitro. Overall, our work demonstrates a synthetic CO2-incorporating acetyl-CoA assimilation route that expands the metabolic solution space of central carbon metabolism, providing options for synthetic biology and metabolic engineering.

Suggested Citation

  • Helena Schulz-Mirbach & Philipp Wichmann & Ari Satanowski & Helen Meusel & Tong Wu & Maren Nattermann & Simon Burgener & Nicole Paczia & Arren Bar-Even & Tobias J. Erb, 2024. "New-to-nature CO2-dependent acetyl-CoA assimilation enabled by an engineered B12-dependent acyl-CoA mutase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53762-9
    DOI: 10.1038/s41467-024-53762-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53762-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53762-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elad Noor & Hulda S Haraldsdóttir & Ron Milo & Ronan M T Fleming, 2013. "Consistent Estimation of Gibbs Energy Using Component Contributions," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Maren Nattermann & Sebastian Wenk & Pascal Pfister & Hai He & Seung Hwan Lee & Witold Szymanski & Nils Guntermann & Fayin Zhu & Lennart Nickel & Charlotte Wallner & Jan Zarzycki & Nicole Paczia & Nina, 2023. "Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Song-Can Chen & Sheng Chen & Niculina Musat & Steffen Kümmel & Jiaheng Ji & Marie Braad Lund & Alexis Gilbert & Oliver J. Lechtenfeld & Hans-Hermann Richnow & Florin Musat, 2024. "Back flux during anaerobic oxidation of butane supports archaea-mediated alkanogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tong Wu & Paul A. Gómez-Coronado & Armin Kubis & Steffen N. Lindner & Philippe Marlière & Tobias J. Erb & Arren Bar-Even & Hai He, 2023. "Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53762-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.