IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53742-z.html
   My bibliography  Save this article

A molecular video-derived foundation model for scientific drug discovery

Author

Listed:
  • Hongxin Xiang

    (Hunan University)

  • Li Zeng

    (Hunan University)

  • Linlin Hou

    (Hunan University)

  • Kenli Li

    (Hunan University)

  • Zhimin Fu

    (Cleveland Clinic
    Northeast Ohio Medical University)

  • Yunguang Qiu

    (Cleveland Clinic
    Cleveland Clinic)

  • Ruth Nussinov

    (National Cancer Institute
    Tel Aviv University)

  • Jianying Hu

    (Yorktown Heights)

  • Michal Rosen-Zvi

    (IBM Research Labs
    The Hebrew University of Jerusalem)

  • Xiangxiang Zeng

    (Hunan University)

  • Feixiong Cheng

    (Cleveland Clinic
    Cleveland Clinic
    Case Western Reserve University
    Case Western Reserve University School of Medicine)

Abstract

Accurate molecular representation of compounds is a fundamental challenge for prediction of drug targets and molecular properties. In this study, we present a molecular video-based foundation model, named VideoMol, pretrained on 120 million frames of 2 million unlabeled drug-like and bioactive molecules. VideoMol renders each molecule as a video with 60-frame and designs three self-supervised learning strategies on molecular videos to capture molecular representation. We show high performance of VideoMol in predicting molecular targets and properties across 43 drug discovery benchmark datasets. VideoMol achieves high accuracy in identifying antiviral molecules against common diverse disease-specific drug targets (i.e., BACE1 and EP4). Drugs screened by VideoMol show better binding affinity than molecular docking, revealing the effectiveness in understanding the three-dimensional structure of molecules. We further illustrate interpretability of VideoMol using key chemical substructures.

Suggested Citation

  • Hongxin Xiang & Li Zeng & Linlin Hou & Kenli Li & Zhimin Fu & Yunguang Qiu & Ruth Nussinov & Jianying Hu & Michal Rosen-Zvi & Xiangxiang Zeng & Feixiong Cheng, 2024. "A molecular video-derived foundation model for scientific drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53742-z
    DOI: 10.1038/s41467-024-53742-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53742-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53742-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam Smith, 2002. "Screening for drug discovery: The leading question," Nature, Nature, vol. 418(6896), pages 453-455, July.
    2. Christoph Gorgulla & Andras Boeszoermenyi & Zi-Fu Wang & Patrick D. Fischer & Paul W. Coote & Krishna M. Padmanabha Das & Yehor S. Malets & Dmytro S. Radchenko & Yurii S. Moroz & David A. Scott & Kons, 2020. "An open-source drug discovery platform enables ultra-large virtual screens," Nature, Nature, vol. 580(7805), pages 663-668, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Beroza & James J. Crawford & Oleg Ganichkin & Leo Gendelev & Seth F. Harris & Raphael Klein & Anh Miu & Stefan Steinbacher & Franca-Maria Klingler & Christian Lemmen, 2022. "Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ayan Chatterjee & Robin Walters & Zohair Shafi & Omair Shafi Ahmed & Michael Sebek & Deisy Gysi & Rose Yu & Tina Eliassi-Rad & Albert-László Barabási & Giulia Menichetti, 2023. "Improving the generalizability of protein-ligand binding predictions with AI-Bind," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yi An & Jiwoong Lim & Marta Glavatskikh & Xiaowen Wang & Jacqueline Norris-Drouin & P. Brian Hardy & Tina M. Leisner & Kenneth H. Pearce & Dmitri Kireev, 2024. "In silico fragment-based discovery of CIB1-directed anti-tumor agents by FRASE-bot," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Kun Wang & Chia-Wei Lee & Xuewu Sui & Siyoung Kim & Shuhui Wang & Aidan B. Higgs & Aaron J. Baublis & Gregory A. Voth & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2023. "The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Lifan Chen & Zisheng Fan & Jie Chang & Ruirui Yang & Hui Hou & Hao Guo & Yinghui Zhang & Tianbiao Yang & Chenmao Zhou & Qibang Sui & Zhengyang Chen & Chen Zheng & Xinyue Hao & Keke Zhang & Rongrong Cu, 2023. "Sequence-based drug design as a concept in computational drug design," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Ana I Gómez & Marcos Cruz & Juan F López-Giménez, 2019. "Evaluating the pharmacological response in fluorescence microscopy images: The Δm algorithm," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-13, February.
    7. Wai Cheung Chan & Xiaoxi Liu & Robert S. Magin & Nicholas M. Girardi & Scott B. Ficarro & Wanyi Hu & Maria I. Tarazona Guzman & Cara A. Starnbach & Alejandra Felix & Guillaume Adelmant & Anthony C. Va, 2023. "Accelerating inhibitor discovery for deubiquitinating enzymes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53742-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.