IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53685-5.html
   My bibliography  Save this article

Fast and light-efficient remote focusing for volumetric voltage imaging

Author

Listed:
  • Urs L. Böhm

    (Charité – Universitätsmedizin Berlin
    Institute of Psychiatry and Neuroscience of Paris (IPNP))

  • Benjamin Judkewitz

    (Charité – Universitätsmedizin Berlin)

Abstract

Voltage imaging holds great potential for biomedical research by enabling noninvasive recording of the electrical activity of excitable cells such as neurons or cardiomyocytes. Camera-based detection can record from hundreds of cells in parallel, but imaging entire volumes is limited by the need to focus through the sample at high speeds. Remote focusing techniques can remedy this drawback, but have so far been either too slow or light-inefficient. Here, we introduce flipped image remote focusing, a remote focusing method that doubles the light efficiency compared to conventional beamsplitter-based techniques and enables high-speed volumetric voltage imaging at 500 volumes/s. We show the potential of our approach by combining it with light sheet imaging in the zebrafish spinal cord to record from >100 spontaneously active neurons in parallel.

Suggested Citation

  • Urs L. Böhm & Benjamin Judkewitz, 2024. "Fast and light-efficient remote focusing for volumetric voltage imaging," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53685-5
    DOI: 10.1038/s41467-024-53685-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53685-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53685-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hassan Dibaji & Ali Kazemi Nasaban Shotorban & Rachel M. Grattan & Shayna Lucero & David J. Schodt & Keith A. Lidke & Jonathan Petruccelli & Diane S. Lidke & Sheng Liu & Tonmoy Chakraborty, 2024. "Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Changjia Cai & Johannes Friedrich & Amrita Singh & M Hossein Eybposh & Eftychios A Pnevmatikakis & Kaspar Podgorski & Andrea Giovannucci, 2021. "VolPy: Automated and scalable analysis pipelines for voltage imaging datasets," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruth R. Sims & Imane Bendifallah & Christiane Grimm & Aysha S. Mohamed Lafirdeen & Soledad Domínguez & Chung Yuen Chan & Xiaoyu Lu & Benoît C. Forget & François St-Pierre & Eirini Papagiakoumou & Vale, 2024. "Scanless two-photon voltage imaging," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Xiaoyu Lu & Yunmiao Wang & Zhuohe Liu & Yueyang Gou & Dieter Jaeger & François St-Pierre, 2023. "Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53685-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.