IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53637-z.html
   My bibliography  Save this article

Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth

Author

Listed:
  • Nelson V. Simwela

    (Cornell University)

  • Luana Johnston

    (Cornell University)

  • Paulina Pavinski Bitar

    (Cornell University)

  • Eleni Jaecklein

    (UMass Chan Medical School)

  • Craig Altier

    (Cornell University)

  • Christopher M. Sassetti

    (UMass Chan Medical School)

  • David G. Russell

    (Cornell University)

Abstract

The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.

Suggested Citation

  • Nelson V. Simwela & Luana Johnston & Paulina Pavinski Bitar & Eleni Jaecklein & Craig Altier & Christopher M. Sassetti & David G. Russell, 2024. "Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53637-z
    DOI: 10.1038/s41467-024-53637-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53637-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53637-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bassam K. Kudhair & Andrea M. Hounslow & Matthew D. Rolfe & Jason C. Crack & Debbie M. Hunt & Roger S. Buxton & Laura J. Smith & Nick E. Brun & Michael P. Williamson & Jeffrey Green, 2017. "Structure of a Wbl protein and implications for NO sensing by M. tuberculosis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    2. Qiaozhi Wei & Sandra Pinho & Shuxian Dong & Halley Pierce & Huihui Li & Fumio Nakahara & Jianing Xu & Chunliang Xu & Philip E. Boulais & Dachuan Zhang & Maria Maryanovich & Ana Maria Cuervo & Paul S. , 2021. "MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Jin Kyung Kim & Yi Sak Kim & Hye-Mi Lee & Hyo Sun Jin & Chiranjivi Neupane & Sup Kim & Sang-Hee Lee & Jung-Joon Min & Miwa Sasai & Jae-Ho Jeong & Seong-Kyu Choe & Jin-Man Kim & Masahiro Yamamoto & Hyo, 2018. "GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Filipe Costa-Machado & Esther Garcia-Dominguez & Rebecca L. McIntyre & Jose Luis Lopez-Aceituno & Álvaro Ballesteros-Gonzalez & Andrea Tapia-Gonzalez & David Fabregat-Safont & Tobias Eisenberg & , 2023. "Peripheral modulation of antidepressant targets MAO-B and GABAAR by harmol induces mitohormesis and delays aging in preclinical models," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Shuai Qiao & Chia-Wei Lee & Dawafuti Sherpa & Jakub Chrustowicz & Jingdong Cheng & Maximilian Duennebacke & Barbara Steigenberger & Ozge Karayel & Duc Tung Vu & Susanne Gronau & Matthias Mann & Floria, 2022. "Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53637-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.