IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53478-w.html
   My bibliography  Save this article

Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing

Author

Listed:
  • Sophie Lennartz

    (Helmholtz Centre for Environmental Research – UFZ
    Aarhus University)

  • Harriet A. Byrne

    (Helmholtz Centre for Environmental Research – UFZ
    Helmholtz Centre for Environmental Research – UFZ)

  • Steffen Kümmel

    (Helmholtz Centre for Environmental Research – UFZ)

  • Martin Krauss

    (Helmholtz Centre for Environmental Research – UFZ)

  • Karolina M. Nowak

    (Helmholtz Centre for Environmental Research – UFZ
    Technische Universität Berlin)

Abstract

Biodegradability testing in soil helps to identify safe synthetic organic chemicals but is still obscured by the formation of soil-bound ‘non-extractable’ residues (NERs). Present-day methodologies using radiocarbon or stable (13C, 15N) isotope labeling cannot easily differentiate soil-bound parent chemicals or transformation products (xenoNERs) from harmless soil-bound biomolecules of microbial degraders (bioNERs). Hypothesizing a minimal retention of hydrogen in biomolecules, we here apply stable hydrogen isotope – deuterium (D) – labeling to unravel the origin of NERs. Soil biodegradation tests with D- and 13C-labeled 2,4-D, glyphosate and sulfamethoxazole reveal consistently lower proportions of applied D than 13C in total NERs and in amino acids, a quantitative biomarker for bioNERs. Soil-bound D thus mostly represents xenoNERs and not bioNERs, enabling an efficient quantification of xenoNERs by just measuring the total bound D. D or tritium (T) labeling could thus improve the value of biodegradability testing results for diverse organic chemicals forming soil-bound residues.

Suggested Citation

  • Sophie Lennartz & Harriet A. Byrne & Steffen Kümmel & Martin Krauss & Karolina M. Nowak, 2024. "Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53478-w
    DOI: 10.1038/s41467-024-53478-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53478-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53478-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. S. Rowbotham & M. A. Ramirez & O. Lenz & H. A. Reeve & K. A. Vincent, 2020. "Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daria Sokolova & Tara C. Lurshay & Jack S. Rowbotham & Georgia Stonadge & Holly A. Reeve & Sarah E. Cleary & Tim Sudmeier & Kylie A. Vincent, 2024. "Selective hydrogenation of nitro compounds to amines by coupled redox reactions over a heterogeneous biocatalyst," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53478-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.