IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53369-0.html
   My bibliography  Save this article

Vapor kinetic energy for the detection and understanding of atmospheric rivers

Author

Listed:
  • Hing Ong

    (Argonne National Laboratory)

  • Da Yang

    (University of Chicago)

Abstract

Poleward water vapor transport in the midlatitudes mainly occurs in meandering filaments of intense water vapor transport, spanning thousands of kilometers long and hundreds of kilometers wide and moving eastward. The water vapor filaments are known as atmospheric rivers (ARs). They can cause extreme wind gusts, intense precipitation, and flooding along densely populated coastal regions. Many recent studies about ARs focused on the statistical analyses of ARs, but a process-level understanding of ARs remains elusive. Here we show that ARs are streams of air with enhanced vapor kinetic energy (VKE) and derive a governing equation for Integrated VKE to understand what contributes to the evolution of ARs. We find that ARs grow mainly because of potential energy conversion to kinetic energy, decay largely owing to condensation and turbulence, and the eastward movement is primarily due to horizontal advection of VKE. Our VKE framework complements the integrated vapor transport framework, which is popular for identifying ARs but lacks a prognostic equation for understanding the physical processes.

Suggested Citation

  • Hing Ong & Da Yang, 2024. "Vapor kinetic energy for the detection and understanding of atmospheric rivers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53369-0
    DOI: 10.1038/s41467-024-53369-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53369-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53369-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53369-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.