IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53345-8.html
   My bibliography  Save this article

Compass-model physics on the hyperhoneycomb lattice in the extreme spin-orbit regime

Author

Listed:
  • Ryutaro Okuma

    (University of Oxford Physics Department
    University of Tokyo)

  • Kylie MacFarquharson

    (University of Oxford Physics Department)

  • Roger D. Johnson

    (University College London)

  • David Voneshen

    (Rutherford Appleton Laboratory
    Royal Holloway University of London)

  • Pascal Manuel

    (Rutherford Appleton Laboratory)

  • Radu Coldea

    (University of Oxford Physics Department)

Abstract

The physics of spin-orbit entangled magnetic moments of 4d and 5d transition metal ions on a honeycomb lattice has been much explored in the search for unconventional magnetic orders or quantum spin liquids expected for compass spin models, where different bonds in the lattice favour different orientations for the magnetic moments. Realising such physics with rare-earth ions is a promising route to achieve exotic ground states in the extreme spin-orbit limit; however, this regime has remained experimentally largely unexplored due to major challenges in materials synthesis. Here we report the successful synthesis of powders and single crystals of β-Na2PrO3, with 4f1 Pr4+ jeff = 1/2 magnetic moments arranged on a hyperhoneycomb lattice with the same threefold coordination as the planar honeycomb. We find a strongly non-collinear magnetic order with highly dispersive gapped excitations that we argue arise from frustration between bond-dependent, anisotropic off-diagonal exchanges, a compass quantum spin model not explored experimentally so far. Our results show that rare-earth ions on threefold coordinated lattices offer a platform for the exploration of quantum compass spin models in the extreme spin-orbit regime, with qualitatively distinct physics from that of 4d and 5d Kitaev materials.

Suggested Citation

  • Ryutaro Okuma & Kylie MacFarquharson & Roger D. Johnson & David Voneshen & Pascal Manuel & Radu Coldea, 2024. "Compass-model physics on the hyperhoneycomb lattice in the extreme spin-orbit regime," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53345-8
    DOI: 10.1038/s41467-024-53345-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53345-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53345-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. Kasahara & T. Ohnishi & Y. Mizukami & O. Tanaka & Sixiao Ma & K. Sugii & N. Kurita & H. Tanaka & J. Nasu & Y. Motome & T. Shibauchi & Y. Matsuda, 2018. "Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid," Nature, Nature, vol. 559(7713), pages 227-231, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. G. Cassella & P. d’Ornellas & T. Hodson & W. M. H. Natori & J. Knolle, 2023. "An exact chiral amorphous spin liquid," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Lu Chen & Étienne Lefrançois & Ashvini Vallipuram & Quentin Barthélemy & Amirreza Ataei & Weiliang Yao & Yuan Li & Louis Taillefer, 2024. "Planar thermal Hall effect from phonons in a Kitaev candidate material," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Saurabh Kumar Srivastav & Ravi Kumar & Christian Spånslätt & K. Watanabe & T. Taniguchi & Alexander D. Mirlin & Yuval Gefen & Anindya Das, 2022. "Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Xu-Guang Zhou & Han Li & Yasuhiro H. Matsuda & Akira Matsuo & Wei Li & Nobuyuki Kurita & Gang Su & Koichi Kindo & Hidekazu Tanaka, 2023. "Possible intermediate quantum spin liquid phase in α-RuCl3 under high magnetic fields up to 100 T," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Sebastian Schimmel & Yanina Fasano & Sven Hoffmann & Julia Besproswanny & Laura Teresa Corredor Bohorquez & Joaquín Puig & Bat-Chen Elshalem & Beena Kalisky & Grigory Shipunov & Danny Baumann & Saicha, 2024. "Surface superconductivity in the topological Weyl semimetal t-PtBi2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    7. Taiki Uehara & Takumi Ohtsuki & Masafumi Udagawa & Satoru Nakatsuji & Yo Machida, 2022. "Phonon thermal Hall effect in a metallic spin ice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xiaokang Li & Yo Machida & Alaska Subedi & Zengwei Zhu & Liang Li & Kamran Behnia, 2023. "The phonon thermal Hall angle in black phosphorus," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Dechen Zhang & Kuan-Wen Chen & Guoxin Zheng & Fanghang Yu & Mengzhu Shi & Yuan Zhu & Aaron Chan & Kaila Jenkins & Jianjun Ying & Ziji Xiang & Xianhui Chen & Lu Li, 2024. "Large oscillatory thermal hall effect in kagome metals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53345-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.