IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53155-y.html
   My bibliography  Save this article

Stochastic properties of musical time series

Author

Listed:
  • Corentin Nelias

    (Max Planck Institute for Dynamics and Self-Organization)

  • Theo Geisel

    (Max Planck Institute for Dynamics and Self-Organization
    Bernstein Center for Computational Neuroscience Göttingen, Georg August University Göttingen)

Abstract

Musical sequences are correlated dynamical processes that may differ depending on musical styles. We aim to quantify the correlations through power spectral analysis of pitch sequences in a large corpus of musical compositions as well as improvised performances. Using a multitaper method we extend the power spectral estimates down to the smallest possible frequencies optimizing the tradeoff between bias and variance. The power spectral densities reveal a characteristic behavior; they typically follow inverse power laws (1/f β-noise), yet only down to a cutoff frequency, where they end in a plateau. Correspondingly the pitch autocorrelation function exhibits slow power law decays only up to a cutoff time, beyond which the correlations vanish. We determine cutoff times between 4 and 100 quarter note units for the compositions and improvisations of the corpus, serving as a measure for the degree of persistence and predictability in music. The histogram of exponents β for the power law regimes has a pronounced peak near β = 1 for classical compositions, but is much broader for jazz improvisations.

Suggested Citation

  • Corentin Nelias & Theo Geisel, 2024. "Stochastic properties of musical time series," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53155-y
    DOI: 10.1038/s41467-024-53155-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53155-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53155-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathias Sogorski & Theo Geisel & Viola Priesemann, 2018. "Correlated microtiming deviations in jazz and rock music," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53155-y. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.