IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53067-x.html
   My bibliography  Save this article

Light-driven integration of diazotroph-derived nitrogen in euphotic nitrogen cycle

Author

Listed:
  • Hui Shen

    (Xiamen University)

  • Xianhui S. Wan

    (Xiamen University
    Princeton University)

  • Wenbin Zou

    (Xiamen University)

  • Minhan Dai

    (Xiamen University)

  • Min N. Xu

    (Hainan University)

  • Shuh-Ji Kao

    (Xiamen University
    Hainan University)

Abstract

The bioavailable nitrogen fixed by diazotrophs is critical for sustaining productivity in the oligotrophic ocean. Despite this, understanding how diazotroph-derived nitrogen integrates into the nitrogen cycle within the euphotic zone remains unknown. Here, we investigated nitrogen fixation rates in the particulate and dissolved fractions within the euphotic zone of the North Pacific Subtropical Gyre. Our findings reveal the proportion of nitrogen fixation rates in the dissolved fraction increases with depth. Light manipulation experiments uncover that reduced light levels can stimulate the net release of diazotroph-derived nitrogen, aligning with our depth-related observations. Furthermore, we identify two distinct transfer pathways vertically associated with light-driven ecological niches. Specifically, the released diazotroph-derived nitrogen is transferred to non-diazotrophic plankton in the upper layers. Meanwhile, in the lower layers, it contributes to the nitrification process. Our results underscore the high bioavailability of diazotroph-derived nitrogen and its rapid integration into the nitrogen cycle through multiple pathways within the well-lit ocean.

Suggested Citation

  • Hui Shen & Xianhui S. Wan & Wenbin Zou & Minhan Dai & Min N. Xu & Shuh-Ji Kao, 2024. "Light-driven integration of diazotroph-derived nitrogen in euphotic nitrogen cycle," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53067-x
    DOI: 10.1038/s41467-024-53067-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53067-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53067-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianhui Sean Wan & Hua-Xia Sheng & Minhan Dai & Yao Zhang & Dalin Shi & Thomas W. Trull & Yifan Zhu & Michael W. Lomas & Shuh-Ji Kao, 2018. "Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53067-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.