IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52878-2.html
   My bibliography  Save this article

Learning protocols for the fast and efficient control of active matter

Author

Listed:
  • Corneel Casert

    (Lawrence Berkeley National Laboratory
    Ghent University)

  • Stephen Whitelam

    (Lawrence Berkeley National Laboratory)

Abstract

Exact analytic calculation shows that optimal control protocols for passive molecular systems often involve rapid variations and discontinuities. However, similar analytic baselines are not generally available for active-matter systems, because it is more difficult to treat active systems exactly. Here we use machine learning to derive efficient control protocols for active-matter systems, and find that they are characterized by sharp features similar to those seen in passive systems. We show that it is possible to learn protocols that effect fast and efficient state-to-state transformations in simulation models of active particles by encoding the protocol in the form of a neural network. We use evolutionary methods to identify protocols that take active particles from one steady state to another, as quickly as possible or with as little energy expended as possible. Our results show that protocols identified by a flexible neural-network ansatz, which allows the optimization of multiple control parameters and the emergence of sharp features, are more efficient than protocols derived recently by constrained analytical methods. Our learning scheme is straightforward to use in experiment, suggesting a way of designing protocols for the efficient manipulation of active matter in the laboratory.

Suggested Citation

  • Corneel Casert & Stephen Whitelam, 2024. "Learning protocols for the fast and efficient control of active matter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52878-2
    DOI: 10.1038/s41467-024-52878-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52878-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52878-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52878-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.